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1. INTRODUCTION 

niaxial compressive strength (UCS) of intact 

rocks is one of the crucial parameters that is 

widely underutilized in rock mechanics and 

engineering. Geomechanical properties of rock 

allude to the strength characteristics, so many 

researches have conducted on the simple procedures 

for obtaining the UCS of rock [1-4]. Some methods 

including regression analysis and artificial neural 

network have considered to estimation UCS [5]. 

Obtaining the UCS value needs a time consuming and 

costly process of samples collection and preparation 

[6], to overcome this difficulty used for the non-
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destructive testing and various predictive models 

based on index tests to obtain the mechanical 

characteristics of the rock mass [7-13]. Multi-layer 

perceptron (MLP), statistical techniques, Mamdani 

fuzzy logic (MFL), Sugeno fuzzy logic (SFL), 

adaptive neuro-fuzzy inference system (ANFIS) and 

support vector machine (SVM) have been applied to 

develop UCS predictive models in rock engineering 

[14-15]. Abbaszadeh Shahri et al. (2013) reported 

better application of multivariate regression analysis 

for obtaining UCS as a function of some simple index 

tests [16]. Azimian (2016) summarized empirical 

equations that relate unconfined compressive 

strength of sedimentary rocks. Multivariate 

regression introduced assailable tool for predicted 

UCS by Schmidt hammer and P-wave velocity (v𝑝) 

[17]. SVM is the most appropriate model for 

prediction UCS of travertine rocks proposed by 

Barzegar et al (2016) [18]. Omar (2016) studied 420 

soil samples were located in the UAE and were 

examined including point load test (Is(50)) and 

ultrasonic velocity (USV) through its pulse velocity. 

The results showed that the monographs could 

predict well the unconfined compressive strength 

within ± 10% confidence interval for both Is(50) and 

USV [19]. Shaoqian et al. (2021) used 30 sets of 

regular cylindrical specimen tests between PLS and 

UCS are conducted on limestone mines. The 

correlation relationship between PLS and UCS is 

found by using four basic fitting functions. Then, a 

prediction model is established by using SVM 

algorithm. Multiple training test data are used to 

achieve high-precision prediction of UCS and the 

results show it is less different from the actual values. 

Especially, the R2 coefficient reached 0.98. The SVM 

model prediction performance is significantly better 

than the traditional fitting function [20]. Garrido et 

al. (2022) heated the limestone samples to 105 

(standard conditions), 200, 300, 400, 500, 600, 700, 

800 and 900 ºC and cooled slowly (in air) and quickly 

(immersed in water). After that, UCS, PLT and Leeb 

hardness test (LHT) tests were performed to evaluate 

the changes as temperature increases. Results showed 

that decreases over 90% in UCS, of between 50 and 

70% in PLT index and smaller than 60% in LHT 

index [21]. Wei et al. (2023) established an artificial 

neural network (ANN) approach to predict the 

uniaxial compressive strength (UCS) in MPa of 

sedimentary rocks using different input parameters; 

i.e., dry density (ρd) in g/cm3, Brazilian tensile 

strength (BTS) in MPa, and wet density (ρwet) in 

g/cm3. The developed ANN models, M1, M2, and M3, 

were divided as follows: the overall dataset, 70% 

training dataset and 30% testing dataset, and 60% 

training dataset and 40% testing dataset, respectively. 

In addition, multiple linear regression (MLR) was 

performed for comparison to the proposed ANN 

models to verify the accuracy of the predicted values 

[22]. This study is only the theoretical research to 

evaluate the performance of artificial 

intelligence models including Multi-layer 

perceptron (MLP), Adaptive neuro-fuzzy 

inference system (ANFIS) and support vector 

machine (SVM) to estimate the UCS  values of 

limestone rocks. 

 

 

2. MATERIALS AND METHODS 

ANNs are systems and new computing methods for 

machine learning, knowledge representation and 

finally applying knowledge to predict output from 

complex systems. The main idea of these networks is 

based on the function of biological nervous system to 

process data and information in order to learn and 

create knowledge. This system consists of many 

processing elements called neurons, that work 

together to solve a problem. Neural network (NN) 

needs to be trained and process large number of 

information as input pattern. This feature allows the 

interpolation great, especially when data is input with 

the noise and failure (not accurate). NNs may be 

applied as a direct replacement for the correlation, 

linear regression, multiple regression, trigonometric 

and statistical analysis techniques. Therefore, the NN 

can act as an expert. Training is done with the release 

of a network. Since the 1940s, ANNs have been 

utilized in various applications in engineering. ANN 

general software systems mimic the NNs of the 

human brain. Artificial neural networks can perform 

generalized learning classification, identification and 

optimization functions associated with actions. Since 

the ANNs have the ability to work with incomplete 

data, with fault tolerance, they indicate a gradual 

convergence. They can easily form models for 

complex problems. Particularly in the development 

of semi-structured or unstructured solutions to 
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problems, ANN models can provide very successful 

results. In addition, they are cheaper, faster and more 

adaptable than conventional methods, and 

mathematical models based on biological NNs. ANN 

processing information using simple interlocking 

elements is called neurons, which are situated in 

particular layers of the network [14]. In this research, 

the UCS values of limestone rocks are predicted 

based on MLP, ANFIS and SVM. In addition, the 

laboratory data sets and the process of tests are 

extracted from past studies [23-25]. In the following, 

some empirical relationships between the UCS and 

mechanical properties are indicated based on Table 1.  

 

2.1. MLP model 

MLP model consists of three layers including an 

input layer, output layer, and intermediate or hidden 

layers. Therefore, to perform a parametric study, a 

MATLAB code was prepared. Each layer included 

one or more nodes (neurons) [26]. The lines show the 

flow of information between the nodes that is 

transmitted from one node to the next. The study of 

artificial neural networks composed of four distinct 

types of layers, an input layer, two hidden layers and 

an output layer, and the number of neurons in hidden 

layers 5 and 3. Data sets such as BPI (MPa), SHR, vp 

(m/s), Is50 (MPa) were divided as input and UCS 

(MPa) as the output of education (70% of the dataset) 

and test (30% of the data set) subset for the modeling. 

  

2.2. ANFIS model 

To develop model ANFIS, is used a hybrid algorithm 

that combines the method of least squares and 

gradient descent was released to optimize and adjust 

the parameters of the membership function of 

Gaussian and coefficients, equations, the linear 

output [18]. Reduction of fuzzy clustering based on 

density measurement data points in the feature space, 

to create a law-based relationship between input and 

output variables that were used. 

 

2.3. SVM model 

Support Vector Machines is a powerful methodology 

for solving problems in nonlinear classification. 

Least Squares Support Vector Machines (LS-SVM) 

are reformulations to the standard SVMs that lead to 

solving linear KKT systems. In this study, SVM 

model with RBF kernel performance tests have 

shown the best results. The models were created by 

using LS-SVMlab Toolbox [20]. 

 

3. RESULTS AND DISDUCCION  

In order to achieve the purposes of this study were 

applied three non-linear methods, namely MLP, 

ANFIS and SVM. During procedure MLP model, 

were divided datasets such as BPI (MPa), SHR, vp 

(m/s), Is50 (MPa) as input and UCS (MPa) as the 

output of training (70% of the dataset) and test (30% 

of the dataset) subset for the modeling. In Table 2, 

the obtained values of the performance indices for the 

proposed MLP, ANFIS and SVM models. The values 

of 𝑅2, RMSE and VAF  are compared with each other 

in this research for specifying the best computational 

method among MLP, ANFIS and SVM for predicting 

the uniaxial compressive strength of limestone. The 

supplementary information of the coefficient 𝑅2 

calculation is presented in References [27-29]. The 

coefficient R2 has been used as a vital quality factor 

in various engineering applications. RMSE measures 

the deviation of predicted values from the observed 

values. RMSE is used for comparing the accuracy of 

different models for dataset. RMSE is never to be 

negative, and a value of zero shows a good agreement 

of a prediction model to the data. In fact, the low 

values of RMSE shows high accuracy in predicting 

the data [30]. VAF is another measure to evaluate the 

accuracy of prediction models. High VAF shows high 

performance to predict the data [31]. Correlation 

between the predicting and measured UCS for 

training and testing datasets are shown in Figures 1 

to 3. The result of MLP model is based on R2 , RMSE 

and VAF value are obtained, respectively, 0.899, 

12.104 and 69.272 for testing step and 0.933, 9.936 

and 80.207 for training step. The ANFIS model in the 

training step resulted in the R2 of 0.974, RMSE of 

8.729 and VAF of 83.538 and for the testing step are 

0.949, 10.456 and 83.494, respectively in Fig 3, 

respectively. The result of the developed SVM , that 

created by using LS- SVMlab Toolbox, based on 𝑅2, 

for testing step in Fig 4 is 0.967 and on RMSE and 
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VAF value are 9.439 and 92.122 and for training step 

are 0.993, 6.891 and 95.489 , respectively. The 

relation between predicting UCS and measured UCS, 

of models are shown in Figures 4 to 6. The result of 

MLP, ANFIS and SVM models is based on R2 value 

are obtained 0.902, 0.951 and 0.991, respectively. 

The SVM model has higher accuracy than MLP and 

ANFIS models, in addition to, Standard deviation and 

mean, simultaneously are better in this model.  

 

Table 1. Some empirical relationships between the UCS and mechanical properties. 

Reference Coefficient of 

determination 

(R) 

Correlation Rock type Rock 

property 

[32] 0.94 UCS=5.5 BPI  

23 different rocks 

BPI 

0.83 UCS=9.82 e−0.108BPI 

0.82 UCS = 40.48 ln(BPI)
− 13.4 

[33] 

 

0.86 UCS= 6.1 BPI − 3.3 9 different rocks 

 

0.90 

 

UCS=5.25BPI 

Marl, mudstone, 

sandstone, schist 

[34] 0.90 UCS= 5.1 BPI 23 different rocks 

[35]  

0.86 

 

UCS = 0.8 × 2.266mi
0.3824

× BPI 

Limestone,travertine,andes

ite,sandstone ,marl and 

schist 

[23]  

- 

 

UCS=5.1×
1.47−0.00456𝛼BPIα 

Limestone,sandstone,mica 

schist, shale and travertine 

[36] 0.87 UCS=4.93BPIc Granite,schist,sandstone 

[25] 0.86 UCS=5BPI Granite,schist,sandstone 

[37] 0.92 UCS=7.45e(0.07SHR) Granite SHR 

[38] 0.66 UCS=4.24e(0.059SHR) 11 different rock 

[39] 0.76 UCS=3.201SHR-46.59 Shale, anhydrite, dolomite 

[13] 0.92 UCS=0.0028SHR2.584 9 different rocks 

[9] 0.91 UCS=1.15SHR-15 Granite 

[40]  

0.88 

 

UCS=0.678SHR 

 

Conglomerates rock 

[25] 0.87 UCS=2.33e0.065SHR Granite,schist,sandstone 

[41]  

0.913 

 

UCS=0.1383SHR1.743 

 

47 different rocks 

[10] 0.83 UCS=9.95v𝑝
1.21 27 different rocks Vp 

[42] 0.81 UCS=0.11v𝑝 − 515.56 Serpentinites 

[43] 0.96 UCS=0.1333v𝑝 − 227.19 12 different rocks 

[44] 0.83 UCS=0.14𝑣𝑝 − 899.33 Peridotites 

[40] 0.94 UCS=0.005v𝑝 Conglomerates rock 

[45] 0.934 UCS=0.039v𝑝 − 50.01 13different rocks 

[10] 0.85 UCS=8.41I𝑆50 + 9.51 22 different rocks Is50 

0.93 UCS=23.62I𝑆50 − 2.69 Coal measure rocks 

[46] 0.83 UCS=15.3I𝑠50 23 different rocks 

[38] 0.85 UCS = 9.08Is + 39.32 9 different rocks 

[11] 0.75 UCS=10.22I𝑠50 + 24.31 38 different rocks 

[37] 0.97 UCS=18Is50 Granite 

[47] 0.98 UCS=100ln Is50 + 13.9 11 different rocks 

[42] 0.74 UCS=19.79I𝑠50 Serpentinites 

 

Table 2. Ranking values of the trained and testing steps for predict UCS 

Model Training Step Testing Step 

𝑹𝟐 RMSE VAF 𝑹𝟐 RMSE VAF 

MLP 0.933 9.936 80.207 0.899 12.104 69.272 

ANFIS 0.974 8.729 83.538 0.949 10.456 83.494 

LS-SVR 0.993 6.891 95.489 0.967 9.439 92.122 
 



J. Civil Eng. Mater.App. 2023 (September); 7(3): 161-168   

·························································································  

 
165 

  
a) b) 

 

Figure 1. Value of R𝟐 of MLP model (a) test (b) train 

 

 

  
a) b) 

 

Figure 2. Value of R𝟐 of ANFIS model (a) test (b) train 

 

 

  
a) b) 

 

Figure 3. Value of R𝟐 of SVM model (a) test (b) train 
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Figure 4. Measured and estimated UCS for limestone rocks in MLP model 

 
Fig 5. Measured and estimated UCS for limestone rocks in ANFIS model 

 
Figure 6. Measured and estimated UCS for limestone rocks in SVM model 

 

 

 

4. CONCLUSION 

In this study, three non-linear methods that are the 

MLP, ANFIS and SVM models were compared. The 

models were tested using 21 testing samples. All 

models to predict UCS indicated satisfactory results 

in relation to statistical performance metrics. Thus, 

the models were passable to predict the UCS of 

limestone. The models examined for prediction, 

provided relatively lower errors for training data. In 
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comparison ANFIS model and MLP model, ANFIS 

model gave better performance in prediction of the 

UCS than the MLP model. SVM model with LSSVR 

function yielded the most appropriate results in the 

testing step and included the highest 𝑅2=0.993, the 

RMSE= 9.439 MPa and VAF =92.122 MPa. It was 

concluded that the SVM model was superior to the 

other developed models that was expected to be 

bound up with dimensional independence. It is noted 

that the results of this research are within the scope 

of modeling and examined samples. 
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