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1. INTRODUCTION 

iquefaction is a problem that threatens the 

stability of foundations on saturated sands, 

and one way to increase the soil resistance 

against it is by using micro piles. They have 

diameters smaller than 300 mm and are more 

advantageous than piles [1]. As they are often 

reinforced with light steel and cement grout injection, 

they not only resist settlement as bearing elements 

but also improve the mechanical features (strength 

and behavior) of the surrounding soil due to the 

mentioned injection [2]. Micropiles are, in fact, 

expected to reduce the risk of liquefaction by 

increasing the soil stiffness, reducing its movements, 

and, hence, reducing the cyclic shear strains [3]. The 

behavior of micro piles in liquefiable soils depends 

on such parameters as the loading type, frequency of 

incoming waves, and the surrounding soil behavior, 

which is assumed to be elastic in many related studies 

[4-7]. However, studies on recent devastating 

earthquakes – Kobe (1995), Loma Prieta (1989), 

Kocaeli (1999) – show that assuming nonlinear 

behavior for surrounding soils gives better results in 

deep foundation (micropile-pile) designs in seismic 

areas.This study is aimed to examine the dynamic 
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behavior of groups of micro piles in liquefiable soils 

studied by many researchers through physical and 

numerical models and field studies. In physical 

modeling, e.g., (1g) shaking table and (ng) 

centrifuge, many researchers have used small-/large-

scale models to study the seismic behavior of 

single/group of micropile(s) both vertically and 

obliquely under 0-20ᵒ angles (with respect to 

normal), in both dry and saturated soils, by changing 

the effective parameters and have checked their 

performance in improving the liquefaction potential 

[2, 3, 8-11]. Some researchers have used finite 

element and finite difference methods to study the 

bending moment of micro piles in dry soils [12-16], 

and some have used finite element and physical 

modeling with (ng) centrifuge to study how micro 

piles reduce the liquefaction potential of non-

cohesive soils [17-19], and a few have used case 

studies to examine how micro piles improve soils to 

prevent liquefaction [20, 21, 22]. As examining the 

above research show that no specific numerical study 

has been done to see how micro piles behave in 

liquefiable soils, this research first used the FLAC3D 

Software for the numerical modeling validation 

through the results of VELACS international project 

Test 1 model and then analyzed the effects of the 

performance of micro piles by modeling 4 different 

groups of them under long/short (scattered/dense) 

spacing with/without superstructures. 

 

2. METHODOLOGY 

2.1. VELACS TEST 1 MODEL SPECIFICATIONS  

The VELACS project was done in 1993 in the 

centrifuge physical model framework in 9 different 

modes to examine the soil liquefaction mechanism. 

In this project, validation is checked by VELACS 

international project Test 1 class B (with a vertical 

acceleration of 50 g) that uses a uniform, 40% dense 

layer of saturated Nevada sand, the parameters of 

which are listed in Table 1 [23]. Here, the dynamic 

load is applied at the bottom of the laminar test box 

with an acceleration history including 20 cycles with 

a frequency of 100 Hz and a maximum acceleration 

of 11.75 g. 

Table 1. Characteristics of the 40%-dense Nevada sand [23] 

Parameter Porosity 
Dry 

density 

Soil 

cohesion 

Angle of 

internal 

friction 

Elasticity 

modulus 

Standard 

permeabilit

y number 

Permeability 

coefficient 

Poisson's 

ratio 

 

Unit - Kg/m3 kPa degree MPa - m/s - 

Amount 0.42 1500 0 30 10 7 6.5e-5 0.3 

 

 
Figure 1. The initial model considered for numerical modeling, (a) Overview of modeling, (b) Arrangement of 

micro piles, (c) Meshed model in the software 



J. Civil Eng. Mater.App. 2023 (March); 7(1): 33-42 
·························································································   

 
35 

2.2. CONVERTING THE PHYSICAL CENTRIFUGE MODEL INTO THE INITIAL MODEL  

Considering the physical modeling vertical 

acceleration, a 1:50 scale factor was used to convert 

the initial model into a physical model; dimensions 

of the initial model were taken (according to Table 2) 

to be 23, 16, and 10 m in the x, y, and z directions, 

respectively, and the dynamic loading was applied to 

the bottom of the initial model with an acceleration 

history (Fig. 6) with a frequency of 2 Hz, a maximum 

acceleration of 0.235 g and a vertical acceleration of 

0. Dimensions of the initial model and its applied 

acceleration history were calculated according to the 

scale factors of the ng-model (Table 2) [24]. 

Table 2. Scale factors used in the centrifuge test [24] 

Parameters Scale factors 

 λ=50 

Small-scale physical 

model 

Initial model 

Dimensions λ 20×45.72×32 cm  10×23×16 m 

Density 1 40% 40% 

Acceleration 1/λ 11.75g 0.235g 

Frequency 1/λ 100 Hz 2Hz 

Stiffness 1 10 MPa 10 MPa 

 

2.3. Selecting the behavioral model and model damping 

The finite difference method uses the Mohr-Columb 

behavioral model to define soil materials’ plastic 

deformations, and the Finn elastoplastic behavioral 

model, presented by Byrne (1991) [27], for the 

liquefaction modeling, according to Eq. (1): 

∆𝜀𝑣𝑑

γ
= 𝐶1 exp(−𝐶2 (

𝜀𝑣𝑑

𝛾
))         (1) 

where, ∆𝜀𝑣𝑑 is the volumetric strain reduction 

growth, γ is the cyclic shear strain range and 𝐶1 and 

𝐶2 are constants showing the changes in the volume 

and density of the soil. In the dynamic analyses, this 

modeling uses the local damping, according to Eq. 

(2): 

𝛼𝐿 = π × 𝐷            (2) 

where, 𝛼𝐿is the coefficient of local damping and D is 

5% of the critical damping, which, compared to local 

damping, shortens the analyses time due to less 

calculations than other types of damping, and 

operates independently of the system natural 

frequency. The centrifuge boundary conditions are 

closed on the sides and hard on the bed for modeling. 

After dynamic analyses under the above conditions, 

the results of the numerical modeling were compared 

with those of the VELACS Test 1 physical centrifuge 

model; in Figures 2-5 that show the results in the 

form of excess pore water pressure, the horizontal 

line shows the null effective stress zone at the studied 

depth, which, compared to the graphs of the excess 

pore water pressure, means that the numerical 

analyses results are acceptably close to those of the 

centrifuge model. 

 

2.4. NUMERICAL MODELLING OF THE INITIAL MODEL  

As small-scale physical models, such as the 

centrifuge and shaking Table, are not only time-

consuming and expensive but are also weak in 

simulating and meeting the boundary conditions [25, 

26], modeling by numerical methods becomes a 

necessity. This research has used the FLAC3D finite 

difference software for the analyses and 0.2 m-dia., 8 

m-long concrete micro piles, with an axial stiffness 

of 629 MN (Table 3), for the modeling. Micropile is 

modeled as beam elements; the soil is modeled using 

a brick element; the micro piles-cap connection is 

rigid, with no connection with the surrounding soil, 

cap thickness is 1 m, and the center-to-center distance 

of micro piles is 4 times the micropile diameter. To 

model the effects of the inertial forces on the dynamic 

response of the micropiles, use has been made of a 1-

DoF superstructure with a mass of 40 tons consisting 

of two 1.25-m columns; full features of the cap and 
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superstructure are listed in Table (4). The micro piles-

surrounding soil interface is defined by certain 

elements, the normal shear and bending stiffness of 

which equal the shear modulus of the soil [14]; Figure 

(6) shows the history of the acceleration applied to 

the initial model. 

Figure 2. Excess pore water pressure at a depth of 1.5 m 

Figure 3. Excess pore water pressure at a depth of 2.5 m 

Figure 4. Excess pore water pressure at a depth of 5 m 
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Figure 5. Excess pore water pressure at a depth of 7.5 m 

Figure 6. Acceleration map of VELACS Test 1 

This modeling has used free boundaries not to let 

waves enter the model and to reduce the effects of  

boundary conditions on the sides of the model. 

Table 3. Characteristics of the base concrete micropile  

Density 
Poisson's 

ratio 

Elasticity 

modulus 

Length-to-

diameter ratio 

Spacing-to-

diameter ratio 
Diameter Length 

𝝆 (𝒌𝒈/𝒎𝟑 ) 𝜈 𝐸 (𝑁/𝑚2 ) 𝐿/𝑑 𝑆/𝑑 𝑑𝑃  (𝑚) 𝐿𝑃  (𝑚) 

2400 0.3 2.2e10 40 4 0.2 8 

Table 4. Specifications of the base cap 

Height Mass Density 
Poisson's 

ratio 

Elasticity 

modulus 
Thickness With Length 

𝑯𝒔𝒕 (𝒎) 𝑚𝑠𝑡 (𝑡) 𝜌 (𝑘𝑔/𝑚3 ) 𝜈 𝐸 (𝑁/𝑚2 ) 𝑡𝐶  (𝑚) 𝐷𝐶  (𝑚) 𝐿𝐶  (𝑚) 

1.25 40 2400 0.3 2.5e10 0.3 3 3 

 

 

 

3. RESULTS AND DISCUSSION 

3.1. PARAMETERS 

This study has used various micropile arrangements 

with various s/d ratios, with/without superstructure 

(Fig. 1b), to check the micro pile's efficacy in 

reducing the soil settlement and excess pore water 

pressure. 
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3.2. EFFECTS OF NUMBER OF MICROPILES  

To study the effects of the number of micropiles on 

the excess pore water pressure and soil settlement, 

this research has used 4 different groups of micro 

piles all designed based on the data of Table (3). 

Figures 7-8 show the related results; groups with 

more micro piles have reduced excess pore water 

pressure and more settlement in loose soils. 

 

3.3. MICROPILES SPACING EFFECTS  

To study the micropiles’ spacing (density/dispersion) 

effects, other parameters were kept constant, and 

some different-spacing models were designed based 

on the data of the mentioned Tables. Fig (9) shows 

the settlement variations for dense and scattered 

micro piles with different s/d ratios; the results of 

both cases are quite close and do not improve the 

liquefaction-induced settlement considerably. 

Figure 7. Excess pore water pressure variations for micropile groups at a depth of 2.5 m 

Figure 8. Micropile settlement (with superstructure, s/d = 4) 

Figure 9. Dense/scattered micropile settlement (with superstructure) 
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3.4. SUPERSTRUCTURE EFFECTS  

Different models with/without superstructure/micro 

piles were designed based on the data in Table (4) to 

study how superstructures affected the liquefaction 

potential; effects of using micro piles with and 

without superstructures are shown in Figures 10-11, 

and results of soil settlement with/without using 

micro piles and superstructures are shown in Figures 

12-15. As shown, the effects of using micro piles are 

more without superstructures than with them, 

concluding that without superstructures, scattered or 

dense micropile arrangements do not reduce 

settlements, but with superstructures, short-spacing 

(dense) micropile arrangements reduce settlements 

more than long-spacing (scattered) cases. 

Figure 10. Settlement for dense/scattered micropiles (without superstructure) 

Figure 11. Settlement for the case with/without dense micropiles (with superstructure) 

Figure 12. Settlement for the case with/without scattered micropiles (with superstructure) 
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Figure 13. Settlement for the case with/without dense micropiles (without superstructure)  

Figure 14. Settlement for the case with/without scattered micropiles (without superstructure) 

Figure 15. Settlement for dense/scattered micropiles with/without superstructure 

 

4. CONCLUSION 

According to the results, since micropile systems 

have significant advantages for construction in 

seismic areas (due to their high flexibility/ductility), 

and considering the settlement results of no-

micropile foundations with/without superstructure 

that show resistance against liquefaction increases in 

the presence of superstructure, it can be concluded 

that places with less-weight (lighter) structures need 

more preparations against liquefaction because it 

incurs great damage to the structure, and micro piles 

are effective engineering solutions for seismic zones 

during this phenomenon. As the current research was 

aimed to show the micropile efficacy against 

liquefaction by reducing settlements in the presence 
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and absence of structures, numerical modeling was 

first validated with centrifuge models, the results of 

which were acceptably close to those of the 

centrifuge test. Liquefaction occurred about 4 sec up 

to a depth of 5 m, but at 7.5 m depth, it did not occur 

due to the increased effective stress caused by the 

upper layers of the soil. Results showed that 

superstructures reduced the liquefaction probability, 

and increasing micro piles reduced not only the 

settlement but also the amount of excess pore water 

pressure acceptably. Examining the results revealed 

that micro piles were more effective in reducing 

settlements in the absence of superstructures, 

concluding that in this case, dense or scattered 

micropile arrangements have no effects on reducing 

settlement, but dense arrangements help micro piles 

to be more effective in reducing settlement in the 

presence of superstructures. 
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