
J. Civil Eng. Mater.App. 2023 (March); 7(1): 11-21 
·························································································   

 
11 

                                                            Journal of Civil Engineering and Materials Application 

http://jcema.comJournal home page:  
 

 

Received: 22 January 2023 • Accepted: 28 February 2023 

doi: 10.22034/jcema.2023.382603.1101 

 

A Novel Analytical Approach for Assessing the 
Buckling Behavior of non-Prismatic Elastic Columns 
Based on Power Series 
 

 
Ali Bagherzadeh, Reza Zia Tohidi, Abbasali Sadeghi *

 

Department of Civil Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran. 

 
*Correspondence should be addressed to Abbasali Sadeghi, Department of Civil Engineering, Mashhad Branch, Islamic Azad University,   
Mashhad, Iran. Tel: +989155625020; Email: abbasali.sadeghi@mshdiau.ac.ir   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

Copyright © 2023 Abbasali Sadeghi. This is an open access paper distributed under the Creative Commons Attribution License. Journal of Civil Engineering and Materials 
Application is published by Pendar Pub; Journal p-ISSN 2676-332X; Journal e-ISSN 2588-2880. 

 

 

1. INTRODUCTION 

tability analysis and determination of critical 

buckling force of columns has a very long 

history in structural engineering research. 

Frame members, including beams or columns, can be 

designed under different conditions and for different 

applications as variable cross-sections, and these 

members are called non-prismatic. A member with a 

variable cross-section has a higher bearing capacity 

than a prismatic member with a larger cross-section. 

Also, most engineers today are looking to use ideal 

methods to reduce the weight of the structure. As a 

result, it can be said that by using this type of 

member, the bearing capacity can be significantly 

increased, and at the same time, the weight of the 

S 
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structure can be reduced. This is very important in 

terms of economic savings. 

Researchers have used various methods, most of 

which are based on solving the differential equation 

of stability of a general element under the influence 

of axial and lateral forces, to specify the buckling 

force of columns. In this regard, Timoshenko and 

Gere [1], Chen [2], and Bazant [3] proposed several 

methods based on approximate numerical methods or 

solving a body of differential equations governing 

and controlling the stability of elastic columns with 

different boundary conditions. Frisch-Fay [4] studied 

the buckling issue and specified the buckling force of 

a prismatic element with uniform axial force in 

different boundary conditions using the analytical 

method and calculated the critical load for a fully 

restrained column using the Bessel integral. 

Karabalis [5] solved the stability differential equation 

controlling the non-prismatic beam by the Numerical 

method and then determined the stiffness and 

geometric matrix coefficients governing the elastic 

member. During a numerical study, Lake [6] 

determined the buckling force of beam columns 

whose cross-sectional area changes in steps along the 

length of the member and is under static loading. 

Finally, it was well shown by several diagrams to 

what extent reducing the cross-sectional area along 

the member can be economical in terms of reducing 

the weight of the structure and also increasing the 

axial buckling force due Finally, it was well shown 

by several diagrams to what extent reducing the 

cross-sectional area along the member can be 

economical in terms of reducing the weight of the 

structure and also increasing the axial buckling force 

due to the increase in bearing capacity. Arbabi [7] 

examined the elastic buckling of non-prismatic beam 

columns with variable thickness. Williams and Aston 

[8] examined the limits of the buckling force of 

tapered columns with the second moment of area. 

With the aid of the Bessel functions, Li [9] gave a 

variety of exact solutions for buckling of non-

uniform columns subjected to the axial concentrated 

and distributed loading. Signer [10] studied the 

buckling behavior of tapered columns with linear 

changes in flexural stiffness along the member. Then, 

the slope-deflection method is used for calculating 

the effective buckling length of non-prismatic 

columns Ermopulos [11]. The amount of critical 

buckling force of a column with a variable cross-

section, which is a member of an unbraced frame and 

is subjected to concentrated axial compressive load at 

its various points, has been determined by Ermopulos 

[12] by solving the nonlinear differential equation of 

stability using the slope-deflection method. 

Raftoyiannis [13] examined the critical buckling 

force of muscular members. In this study, in order to 

solve the quadratic differential equation, it is 

assumed that the effect of the above can be 

considered as an initial and hypothetical curvature. 

Saffari [14] obtained the effective length coefficient 

for sloping frames with muscular members using the 

slope-deflection relationships. The proposed method 

modifies the stability coefficients in the slope-

deflection relationships for frames whose profile 

dimensions change linearly along the member. Rahai 

[15] determined the critical loads of columns with 

variable cross-sections in different modes using the 

energy method and the principle of similarity of 

buckling and vibrating deformation of elastic 

members. The stability of a braced standing by a 

heavy column and its optimum place of support is 

evaluated by Wang [16]. The buckling of axially 

graded columns with any axial nonhomogeneity and 

the design of the shape profile of a column are 

assessed by Huang and Li [17]. Rokhi Shahri et al. 

[18] studied the post-buckling behavior of the lateral 

unbraced frame by using Elastica theory.  

Many approaches are used to solve limitations to 

investigate the stability issues of elastic columns with 

changeable cross-sections subjected to different 

boundary conditions. The use of the special 

capability technique, for example, utilizing Bessel 

functions, emphatically relies upon the type of a 

customary differential condition with variable 

coefficients. This paper presents an accurate 

technique for deciding the buckling force of 

prismatic and non-prismatic columns under tip force. 

 

 

2. METHODOLOGY 

2.1. CLAMPED-FREE COLUMN 

A prismatic column in which the flexural rigidity is 

variable is considered. The column under the axial 

compressive force P is shown in Fig. 1(a).The 

column length is L and clamped to the support at 

point A. In case the load is 𝑃 ≥ 𝑃cr, where 𝑃cr is the 

critical load of column, the column can be positioned 
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in the equilibrium state as shown in Fig.1(b). By 

accepting the simplifying assumption, the axial 

length change of the column is ignored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) A prismatic C-F column under the load P; (b) Equilibrium state of column. 

 

 

Figure 2. The static equilibrium state of C-F column by drawing a cross section 

 

The boundary conditions in this structure are: 

𝑦(𝑠 = 0) = 0 ,   𝜃(𝑠 = 0) = 0 , 𝑀(𝑠 = 𝐿) = 0             (1) 

Where 𝑦 is the horizontal displacement, 𝜃 is the slope value and 𝑀 is the internal bending moment.   
 

The McLaurin expansion of the slope function, 𝜃(𝑠) is as follows: 
 

𝜃(𝑠) = ∑ 𝑎𝑛

𝑠𝑛

𝑛!

𝑀

𝑛=0

                                                              (2) 

Where: 

𝑎𝑛 =
𝑑𝑛𝜃

𝑑𝑠𝑛
,        𝑠 = 0                                                        (3) 

The zero slope in support A gives us the following relation: 

𝑎0 = 0                                                                                  (4) 
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The static equilibrium equations determine the 

distributed forces. By drawing a cross section in the 

structure, the static equilibrium state of column as in 

Figure 2 is available. 

 

𝑀 = 𝑀𝐴 − 𝑃𝑦                                                                    (5) 

On the other hand we know: 

𝑀 = 𝐸𝐼
𝑑𝜃

𝑑𝑠
                                                                         (6) 

Where 𝐸𝐼 is the flexural rigidity and a function of s. 

The combination of Eqs. (4) and (5) gives the 

 following relation: 

 

𝐸𝐼
𝑑𝜃

𝑑𝑠
= 𝑀𝐴 − 𝑃𝑦                                                             (7) 

 

For obtaining the McLaurin expansion coefficients of 

Eq. (3), Eq. (7) and its derivatives are used. Thus Eq. 

 (8) results for 𝑛 =  1. 

 

𝐸𝐼0𝑎1 = 𝑀𝐴                                                                        (8) 

 

Where 𝐸𝐼0 is the amount of flexural stiffness at the 

abutment. Deriving from Eq. (7) leads to the  

following equation: 

 

𝑑

𝑑𝑠
[𝐸𝐼

𝑑𝜃

𝑑𝑠
] = −𝑃

𝑑𝑦

𝑑𝑠
                                                        (9) 

 

Considering that 

𝑑𝑦

𝑑𝑠
= 𝑠𝑖𝑛 𝜃                                                                       (10) 

 

Eq. (9) may be written as: 

𝑑

𝑑𝑠
[𝐸𝐼

𝑑𝜃

𝑑𝑠
] = −𝑃𝑠𝑖𝑛 𝜃                                                  (11) 

The latter equation gives the following expression 

with respect to the boundary conditions and 

 according to Eqs. (3) and (8). 

 

𝐸𝐼0
′ 𝑎1 + 𝐸𝐼0𝑎2 = 0                                                        (12) 

or 

𝑎2 = −
𝐸𝐼0

′

𝐸𝐼0
𝑎1                                                                  (13) 

Coefficients 𝑎𝑛(𝑛 > 2)  can be determined by 

sequential derivation from the sides of Eq. (11). 

𝑑𝑛

𝑑𝑠𝑛 [𝐸𝐼
𝑑𝜃

𝑑𝑠
] = −𝑃

𝑑𝑛−1

𝑑𝑠𝑛−1
𝑆𝑖𝑛 𝜃                                  (14) 
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Given that the flexural stiffness is a function of s, the 

left side of the above equation is extended as follows: 

∑ (
𝑛

𝑗
) 𝜃(𝑗+1)𝐸𝐼(𝑛−𝑗)

𝑀

𝑗=0

                                                   (15) 

Where 𝜃(𝑗+1) is the (𝑗 + 1)th order derivative of the 

function 𝜃(𝑠) and 𝐸𝐼(𝑛−𝑗) is the (𝑛 − 𝑗)th order 

 derivative of the function 𝐸𝐼(𝑠).

 

Using Eq. (3), the expression (15) can be rewritten as follows at the point𝑠 =  0: 

𝐸𝐼0𝑎𝑛+1 + ∑ (
𝑛

𝑘 − 1
) 𝑎𝑘𝐸𝐼0

(𝑛+1−𝑘)

𝑀

𝑘=1

                        (16) 

The combination of Eq. (14) and expression (16) leads to 

𝐸𝐼0𝑎𝑛+1 + ∑ (
𝑛

𝑘 − 1
) 𝑎𝑘𝐸𝐼0

(𝑛+1−𝑘)

𝑀

𝑘=1

= −𝑃𝑏𝑛        (17) 

or 

𝑎𝑛+1 = −
𝑃𝑏𝑛

𝐸𝐼0
− ∑ (

𝑛

𝑘 − 1
)

𝐸𝐼0
(𝑛+1−𝑘)

𝐸𝐼0
𝑎𝑘

𝑀

𝑘=1

            (18) 

The expression to the right of Eq. (14) is denoted by 

𝑏𝑛 at point s = 0. The above equation can obtain all  

McLaurin expansion coefficients in terms of 𝑎1. 

 

 

The following boundary condition can obtain the coefficient 𝑎1 in terms of the load 𝑃. 

𝑑𝜃

𝑑𝑠
= 0,      𝑠 = 𝐿                                                             (19) 

Substitution of Eq. (2) into Eq. (19) leads to the following equation: 

∑ 𝑎𝑛

𝐿𝑛−1

(𝑛 − 1)!

𝑀

𝑛=1

= 0                                                       (20) 

Considering the coefficients 𝑎𝑛 in terms of 𝑎1 and 𝑃, the equation can be expressed as follows: 

𝑓(𝑎1, 𝑃) = 0                                                                    (21) 
 

In case the load is 𝑃 > 𝑃cr, 𝑎1 is non-zero and the 

larger the load is applied, the coefficient 𝑎1, which is 

the slope rate at the support, increases. Therefore, the 

equation that can give the critical load is obtained by 

verging 𝑎1 to zero. Solving Eq. (22) provides the 

critical load for the column. 

𝑓(0, 𝑃cr) = 0                                                                    (22) 
 

 

2. HINGED-HINGED COLUMN 

In this state, the column under the axial compressive 

force P, is considered as shown in Figure 3. 

The boundary conditions are presented in the 

following: 

𝑦(𝑠 = 0) = 0                                                                   (23) 

𝑦(𝑠 = 𝐿) = 0                                                                   (24) 
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𝑀(𝑠 = 0) = 0                                                                 (25) 

𝑀(𝑠 = 𝐿) = 0                                                                 (26) 

 

The slope at point A in Figure 4 is 𝜃0 (𝑎0 = 𝜃0) 

and𝑎1 = 0. Establishing static equilibrium equations 

 for a part of the structure leads to the following Eqs: 

 

𝑀 = −𝑃𝑦                                                                          (27) 

−𝐸𝐼
𝑑𝜃

𝑑𝑠
= −𝑃𝑦                                                               (28) 

 

To calculate McLaurin expansion coefficients, we derive from the sides of Eq. (28). 

 

𝑑

𝑑𝑠
[𝐸𝐼

𝑑𝜃

𝑑𝑠
] = 𝑃𝑠𝑖𝑛 𝜃                                                      (29) 

 

Considering Eqs. (3) and (7) and using the Eq. (29) at 𝑠 = 0, the following Eq is reached. 

 

𝐸𝐼0
′ 𝑎1 + 𝐸𝐼0𝑎2 = 𝑃𝑠𝑖𝑛 𝜃0                                            (30) 

 

Given that𝑎1 = 0, the coefficient 𝑎2 is obtained from 

the above equation. The calculation of the 

coefficients 𝑎𝑛 for 𝑛 >  2 results by sequential 

derivation from the parties of Eq. (30). 

𝐸𝐼0𝑎𝑛+1 + ∑ (
𝑛

𝑘 − 1
) 𝑎𝑘𝐸𝐼0

(𝑛+1−𝑘)

𝑀

𝑘=1

= 𝑃𝑏𝑛      (31) 

 

Where 

𝑏𝑛 =
𝑑𝑛−1

𝑑𝑠𝑛−1
𝑆𝑖𝑛 𝜃,        𝑠 = 0                                    (32) 

 

Figure 1. A prismatic H-H column under the load P 
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Figure 2. The static equilibrium state of H-H. Column 
  

Using Eqs. (30) and (31), all McLaurin expansion 

coefficients are obtained in terms of 𝜃0 and𝑃.  The  

following boundary condition is considered: 

𝑑𝜃

𝑑𝑠
= 0,      𝑠 = 𝐿                                                             (33) 

The Eq. (33) is extended as follows: 

∑ 𝑎𝑛

𝐿𝑛−1

(𝑛 − 1)!

𝑀

𝑛=1

= 0                                                       (39) 

 

The substitution of the coefficients 𝑎𝑛 in terms of 𝜃0 

and 𝑃 in the last equation provides the following 

 equation. 

 

𝑔(𝑃, 𝜃0) = 0                                                                    (40) 

 

According to the concept of neutral equilibrium in 

structural stability in the limit state𝜃0 → 0, the 

 applied load 𝑃 tends to 𝑃𝑐𝑟. 

 

 

 

3. RESULTS AND DISCUSSION 

In this section, the accuracy and precision of the 

proposed method is assessed. At first, the buckling 

behavior of a prismatic C-F column is studied and the 

results are compared with Timoshenko [1]. Then the 

non-prismatic columns will be examined. Equations 

are solved with the help of Mathematica [19]. 

 

3.1. EXAMPLE 1 

In this example for a clamped-free column,  
𝑃

𝑃𝑐𝑟
= 𝛼 

and the column buckling is examined for different α. 

Also, the free horizontal and vertical displacement of 

the column is calculated based to the following 

equations using the McLaurin series. 

𝑦𝐿 = ∫ 𝑆𝑖𝑛 𝜃 𝑑𝑠
𝐿

0

= ∫ (𝜃 −
𝜃3

3!
+ ⋯ ) 𝑑𝑠

𝐿

0

              (41) 
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Table 1. Angle θl and displacement of free end of a prismatic C-F column for different α for M = 20. 

𝜶 1 1.015 1.063 1.152 1.293 

𝜽𝒍 0 19.743° 39.755° 58.819° 69.149° 

𝒙𝒍/𝑳 1 0.970 0.883 0.750 0.655 

𝒚𝒍/𝑳 0 0.216 0.420 0.585 0.666 

 

 

Table 2. Angle 𝜃𝑙 and displacement of free end of a prismatic C-F column for different α for M = 40. 

𝛂 1 1.015 1.063 1.152 1.293 

𝛉𝐥 0 19.743° 39.8° 60.04° 76.593° 

𝐱𝐥/𝐋 1 0.970 0.882 0.741 0.592 

𝐲𝐥/𝐋 0 0.217 0.420 0.594 0.705 

 

xL = ∫ 𝐶𝑜𝑠 𝜃 𝑑𝑠
𝐿

0

= ∫ (1 −
𝜃2

2!
+ ⋯ ) 𝑑𝑠

𝐿

0

              (42) 

The results are shown in Tables 1 and 2. As can be 

seen from the comparison of the Tables 1 and 2, a 

more accurate answer is obtained by increasing the 

number of sentences in the McLaurin series. The 

results are compared with Timoshenko's research [1] 

and are shown in Table 3. 

 

 

Table 3. Comparison of current study with Timoshenko theory 

𝜶 𝜽𝒍 𝒙𝒍/𝑳 𝒚𝒍/𝑳 

 Proposed Timoshenko Proposed Timoshenko Proposed Timoshenko 

1 0 0 1 1 0 0 

1.015 19.743° 20 0.970 0.970 0.217 0.220 

1.063 39.8° 40 0.882 0.881 0.420 0.442 

1.152 60.04° 60 0.741 0.741 0.594 0.593 

1.293 76.593° 80 0.592 0.560 0.705 0.719 

 

 

3.2. EXAMPLE 2 

This example previously published [20] is presented, 

for which the proposed approach is demonstrated and 

the results are compared and validated. 

As indicated in Figure 5, three non-prismatic 

columns are shown in three different boundary 

conditions (C-F, H-H and C-H). The cross section of 

all columns is rectangular, the width of which 

changes as a quadratic curve along the length of the 

member, and at the upper end is reduced to half of its 

initial value. In addition the columns are under axial 

compressive load P. 
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Figure 5. Non-prismatic columns with different boundary conditions under concentrated compressive load 

 

 

The critical buckling force of the column is 𝑃𝑐𝑟 =

𝜆𝑐𝑟
𝜋2𝐸𝐼𝐵

𝐿2  where 𝜆𝑐𝑟the critical buckling force 

coefficient is. The Young's modulus is 25 GPa and 

the moment of inertia and cross-sectional area of the 

analyzed column in local coordinates are determined 

as follows: 

 

𝐼(𝑠) = 𝐼𝐴(1 − 0.5𝑠2)                                                     (43) 

𝐴(𝑠) = 𝐴𝐴(1 − 0.5𝑠2)                                                  (44) 

 

The columns are shown in Figure 5 are analyzed by 

using the proposed approach by Wolfrom 

Mathematica software compared to those given by 

the Ref. [21]. Table 4 gives the critical buckling force 

coefficient values obtained for different methods. 

 

Table 4. Critical buckling load coefficient 𝜆𝑐𝑟 for non-prismatic columns of Figure 5. 

Method C-F H-H C-H 

FEM Ansys [22] 0.463 1.686 3.348 

Ref. [21] 0.4629 1.6877 3.349 

Present proposed study 0.4631 1.6877 3.591 

 

3.3. EXAMPLE 3 

Consider the non-prismatic elastic column under a 

compressive force P at the end 𝑥 =  𝐿 in three 

different boundary conditions (C-F, H-H and C-H) as 

shown in Figure 6. The cross section of the column is 

rectangular, in  

which its height decreases linearly while its width is 

constant. The moment of inertia of the column can be  

expressed as 

𝐼(𝜉) = 𝐼0(1 − 𝛽𝜉)3                                                        (45) 

Where 𝛽 denotes the taper ratio of the column. 

Numerical results of the critical buckling force 𝜆𝑃 =
𝑃𝐿2

𝐸𝐼0
 are calculated and they are illustrated in Table 5. 

These results agree very well with those given by the 

Ref. [21] and the finite-element method (FEM) [22]. 
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Figure 6. Geometry and boundary condition of axially loaded column: (a) hinged; (b) clamped hinged; and (c) 

clamped free 

Table 5. Critical load  𝜆𝑃 for a non-prismatic column in three different boundary conditions 

𝜷 C-F H-H C-H 

 Proposed 
Ref. 

[21] 

FEM 

[22] 
Proposed 

Ref. 

[21] 

FEM 

[22] 
Proposed 

Ref. 

[21] 

FEM 

[22] 

0 2.467 2.467 2.47 9.870 9.870 9.87 20.216 20.191 20.19 

0.2 2.023 2.023 2.02 7.091 7.090 7.09 14.445 14.494 14.50 

0.4 1.569 1.569 1.57 4.685 4.685 4.69 9.929 9.543 9.55 

0.6 1.098 1.098 1.10 2.672 2.672 2.68 4.746 5.388 5.40 

0.8 0.606 0.597 0.60 1.088 1.082 1.09 1.790 2.119 2.13 

 

4. CONCLUSION 
The presented examples and comparison of the 

results of this paper with reference indicated a good 

correlation and showed the proposed method can be 

introduced as a suitable method for evaluating the 

post-buckling behavior of columns and specifying 

the buckling force of non-prismatic columns. 

Obviously, in order to achieve a more accurate 

response requires using more sentences in the 

McLaurin series; however, software limitations in 

some cases may prevent this aim. 
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