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1.INTRODUCTION  

ridshell is a kind of spatial structure that covers 

large spans with the minimum amount of materials. 

Elastic gridshell structures have the potential to 

create different shapes of double-curvature structures. 

Structural damage reduction is an important concern for 

curvature structures. Thus, the structural analysis 

procedure is crucial for preventing structural damages. 

Several studies on gridshell have shown innovative 

strategies for designing gridshell structures (1–8). 

Researchers have conducted several studies in the field of 

gridshell structural analysis. Du Peloux et al. (9) employed 

the structural analysis for finding the shape in equilibrium 

and assess its strength, stability, and stiffness. According 

to the research on investigated examples, the impact of 

gravity and residual forces on created structures can be 

ignored (10). A posteriori simulation can be used to 

determine the effective mechanical response of the 

structure. Bouhaya (11) and Baverel et al. (10) 

demonstrated such formulations. Dimcic (5,12) developed 

gridshell structure optimization to achieve a stable and 

statically efficient grid structure. It was discovered that the 

combination of FEA and design process in an iterative 

approach might significantly decrease the gridshell 

structural stresses, displacements, and material of the 

structure, while enhancing the stability. Mesnil (13) 

implemented FEA in order to decrease the displacement 

G 
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and buckling load of the gridshells. The support vector 

machine (SVM) (14) and its developed version, least 

squares-SVM (LS-SVM) (15), are well-known artificial 

intelligence (AI) approaches for nonlinear function 

estimation in civil engineering (16). They have been 

utilized for calculating risk levels for bridge maintenance 

(17), predicting the shear strength of slabs and RC beams 

(18–20), predicting the backbone curve of RC rectangular 

columns (21), estimating the compressive strength of 

concrete, and approximating the resilient modulus of soil 

(22). The main purpose of this paper is to improve a 

framework for structural analysis of GFRP elastic 

gridshell structures. This goal is achieved using the ML 

technique. The design variables such as height, width in 

the transversal x-direction, length in the longitudinal y-

direction, and grid size are considered as inputs. A hybrid 

method consisting of PSO and LSSVM is developed for 

this purpose. The LSSVM-PSO is implemented to predict 

the outputs. Since the FEA is a time-consuming procedure, 

mainly when used with the iterative process, the LSSVM 

method can be used instead of the FEA to reduce the 

required computation time. The sections of this study are 

arranged as follows: In the second part of this paper, the 

problem definition of the gridshell structural analysis is 

presented. Then a method for generating a variation of the 

structural shapes based on specific parameters is 

introduced in Section 3.1. Section 3.2 discusses the FEA 

for analyzing gridshell structures. Section 3.3 and 3.4 

explain the LSSVM and PSO methods with their 

associated formula, respectively. Section 3.5 explains the 

PSO-LSSVM and demonstrates the flowchart of the 

process. The performance indices are presented in Section 

3.6. Section 4 describes the numerical examples and the 

results. Finally, the conclusion is proposed in Section 5. 

 

2. MATERIALS AND METHODS 

         2.1. PROBLEM DEFINITION 
The first step for generating the structural shapes is to 

specify the design variables for the structural formation. 

The valid parameters for designing the shape of the 

gridshell are height, width in the transversal x-direction, 

length in the longitudinal y-direction, and grid size, as 

shown in Table 1. H1, H2, H3 are the height of the 

structure; D1, D2, D3 are the width along x-direction; S 

and G are the span along y-direction and the grid size, 

respectively. These variables act as the design variables for 

generating several forms. This paper aims to predict the 

structural performance by a hybrid ML model. The first 

output is the stress within the elements. In gridshell 

structure, the stress is associated with the curvature of 

beams, and the curvature is mainly caused by the shape of 

the gridshell (23). The breakage occurs in the elements that 

are overstressed. Thus, controlling the stress of the beam 

is essential to overcome this drawback. To this aim, Von 

Mises stress (σv) in the gridshell structure could be defined 

as follows:  
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Another output is the ratio of displacement to the self- weight the total weight of the gridshell is calculated as: 
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Where ρ indicates the density of members, Ai refers to the      

cross-section, and li denotes the length of member-i. The 

 equation for calculating the displacement of node-i is:  

2 2 2

i i i id x y z    

 

(6) 
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Where xi, yi, zi are the displacements in x, y, z directions,            

respectively. Accordingly, the second objective function  

can be expressed as follows:  

  max
2

diF x
W

  
(7) 

Where dimax refers to the maximum nodal displacement in the structure. 

2.2. SHAPE GENERATION OF GRIDSHELL STRUCTURES 
The parametric design method allows generating options, 

discovering trends, running simulations, adjusting 

variables, filtering the search, and a variety of related 

actions (24). This method, as an appropriate approach for 

designing the structure by varying the input values of the 

variables, is applied to create different shapes of gridshell. 

The values of the design variables are first identified to 

generate continuous shells. In the next step, the grid is 

generated on those surfaces with different sizes by tracing 

a grid on the target shape using the compass, called 

compass method. In this method, two guided curves are 

defined on the surface, and thus, the surface is divided into 

four parts. Then, two half-curves are divided based on the 

desired length of the mesh size. After that, three corners of 

one equilateral face can be obtained, one is the intersection 

of those two curves, and two others are the first segments 

on each curve, which are created in the last step. Later, the 

fourth point can be obtained by the intersection of two 

circles with the centers of the first segments, and the 

radiuses are equal to the length of the mesh size. The other 

three parts can be meshed by applying the same process 

(25). According to this criterion, changing the amount of 

the input variables can create different shapes. Afterward, 

the mesh is generated on these shapes by the mentioned 

method. In this regard, three generated shapes by this 

method are presented in Table 1.

Table 1. Design variables of the gridshell and the generated samples. 

1
H

 2
H

 3
H

 1
D

 2
D

 3
D

 S  G  

     

7 5 5 16 18 18 35 0.5 

 

 
  

7 7 6 16 17 18 33 1.3 

 

   

4 5 7 14 17 16 36 3 
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2.3. FINITE ELEMENT MODEL  
Several structural analyses performed by FEA are required 

for preparing the dataset. The first step is creating the 3D 

model of the structure that is consisted of the beam 

elements in x and y-direction. Afterward, the FEA 

conducted in the Abaqus program begins by assigning 

material and cross-sectional properties to the beam 

elements (26,27). The material should be defined based on 

its mechanical properties. Glass fiber reinforcement 

polymer (GFRP) is a type of composite material, which 

can significantly improve the bearing capacity and 

stiffness of gridshell structures, thanks to its high strength, 

elastic limit strain, and young’s modulus (28). The 

mechanical properties of GFRP are shown in Table 2.

   

Table 2. Mechanical properties of GFRP (23). 

Tube Exp. strength R 

(mean value) 

Exp. coefficient of 

variation Cv 

Strength (com. data) Coefficient of variation 

(com. data) 

GFRP pultruded 480 MPa 3% 440 MPa Not disclosed 

 

The bending test of GFRP tubes demonstrated linear 

behavior before their breakage (29); thus, the linear elastic 

constitutive model is defined in the FEA for the beam 

elements. GFRP is commonly used for constructing the 

elastic gridshell in the form of the circular pultruded tube 

that should be considered for simulation. Therefore, the 

structural elements of the gridshells are described as 

circular GFRP tubes with Young’s modulus (E) of 26 GPa 

and density (d) of 1850 kg/m3. The structural members are 

simulated by the beam element B32; therefore, the axial 

forces, shear, and bending moments of the gridshell may 

be precisely computed. Furthermore, the swivel scaffold 

connectors are utilized to simulate the connections. The 

swivel scaffold connection prohibits the out-of-plane 

rotations and the translations between the nodes, while 

allowing in-plane rotation. Fixed supports are established 

for the beam ends to prevent translations and rotations. The 

structural self-weight is defined as the gravitational 

acceleration of 9.8 N/kg, and the weight of equipment is 

assumed to be 2 kN/m2.  

2.4. LEAST SQUARE SUPPORT VECTOR MACHINE (LSSVM)  
Suykens and Vandewalle (30) presented the LSSVM that 

offers a computational advantage in comparison with the 

SVM by converting the inequality constraints of the 

Quadratic Programming (QP) problem into a system of 

linear equations, resulting in faster calculations and lower 

computational complexity (31,32). The constraint problem 

is transformed into an unconstrained problem by 

introducing Lagrange multipliers in the low-dimensional 

feature space. Then, the kernel function projects the 

problem to a high-dimensional feature space. The kernel 

function can simplify the computation of linearly non-

separable issues. Besides, adjusting the parameters of the 

kernel function leads to changing the dimensions of the 

LSSVM feature space in order to achieve maximum 

accuracy and minimum error. The LSSVM optimization 

problem can be expressed as follows: 

 
2 2

1

1 1
min , ,

2 2

n

ii
J w b w  


  

 

                                                                                 (8) 

The following constraints are applied to the above equation: 

  1 , 1,2,3,...,T

i i iy w x b i n        
                                                                                 (9) 

Where b R refers to a bias term, and w represents the 

weight vector. Furthermore, ξi denotes a slack variable that 

indicates how far a data deviates from the ideal condition, 

and γ indicates a regularization factor. As previously 

stated, Lagrange multipliers ai (i=1, 2, 3, …, n) are used to 

address the optimization problems more efficiently. The 

Lagrange function is created as: 

    2 2

1 1

1 1
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n n T

i i i i ii i
L w b a w a y w x b    

 
        

 

                       (10) 

The kernel function selection problem is the first issue that 

must be solved when implementing the LSSVM.  Model 

learning performance is influenced by the kernel function 

parameters. The radial basis function (RBF), which has 

fewer parameters than a polynomial kernel function, is one 
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f the most effective kernel functions. The expression of 

RBF is as follows: 

  2
, exp

i

i

x x
K x x



  
  

   

                                                                             (11) 

 

Where, σ2 indicates the parameters of the kernel function. 

The regularization parameter γ and values of the kernel 

function parameter σ2 have a great influence on the 

performance of the LSSVM model. The distribution of the 

data after mapping to the new feature space is implicitly 

determined by the kernel parameter σ2. The regularization 

parameter γ is utilized to modify the ratio between the 

empirical risk and confidence range; thus, the structural 

risk is minimized (33). 

  

2.5. PARTICLE SWARM OPTIMIZATION (PSO)   
In this study, PSO is implemented for the parameters 

optimization of LSSVM. PSO is a population-based search 

approach. Particles in the population are impacted by self- 

and social-cognition, and subsequently, update their 

velocities and locations using Eqs. (12) and (13). Finally, 

each particle moves towards the optimal location. 

                 1 1 2 21id id id id gd idv t wv t c r t p t x t c r t p t x t     
 

                     (12) 

     1 1id id idx t x t v t   
                                                                                          

                     (13) 

where, i=1,2,…,N, N denotes the number of particles; the 

subscript d demonstrates the dimension of a particle; t 

refers to the number of iterations; pid(t) indicates the 

optimal position of the ith particle; and pgd(t) is the optimal 

location. c1 and c2 are acceleration coefficients; w is the 

inertia weight as bellow: 

 max max min

max

t
w w w w

t
  

 

                                                                            (14) 

 

where, wmax and wmin represent the maximum and 

minimum inertia factors, respectively; tmax indicates the 

maximum amount of iterations. The PSO method can 

tackle global optimal solution issues with a simple 

structure, quick convergence, and broad search range. The 

particle group has memory during the procedure of target 

problem optimization, and particles can pass the best 

locations of particle history to each other. Moreover, there 

are no complicated mathematical procedures like mutation 

and crossover, and no need to establish a lot of 

sophisticated parameters. Currently, the PSO technique 

has been expanded to the larger domains (34), such as 

neural network and pattern recognition training. Another 

major development trend is integration with other 

intelligent algorithms (35). 

 

2.6. PSO-LSSVM MODEL   
PSO-LSSVM model is established to optimize the 

parameters of LSSVM. The particle fitness function and 

the representation of the parameters must be taken into 

account during the optimization. The fitness is utilized to 

determine the location of particles. The more robust 

adaptability is achieved by the smaller fitness function. In 

this study, the fitness function is the mean square error 

(MSE) of the training samples and is expressed as:

 

 
2

1

1 N

ib ibi
e y y

N 
  

 
                                                                           (15) 

Where, yib and y′ib denote the actual and prediction labels 

of the training samples, respectively. The iterative process 

requires a nonlinear FEA in each iteration that is a time-

consuming procedure. Consequently, the LSSVM, as a 

surrogate model, is utilized for structural performance 

prediction in order to reduce the required time. To this aim, 

this model is attempted by splitting the dataset into training 

and testing data.    

The steps of the PSO-LSSVM model are as follows (36): 

Step1: Import data and split it into training and testing sets.  

Step2: Optimization of parameters.  

Step2.1: Set the size of the swarm, maximum number of 

iterations, velocities, and positions of the particles.  

Step2.2: Build LSSVM models and calculate the MSE.  

Step2.3: Assess the fitness of each particle.  
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Step2.4: Update the global optimal solution pgd and the 

individual extremum pid. Update the pid, if the fitness of the 

particle is less than the initial individual extremum. 

Otherwise, retrain the same values. Obtain the pgd on the 

basis of the fitness of each particle.  

Step2.5: Update the velocity, location, and inertia weight.  

Step2.6: Steps 2.2–2.6 should be repeated until a 

termination condition is fulfilled.  

Step2.7: Obtain the optimal parameters.  

Step3: Implement the LSSVM model with obtained 

parameters 

The overall procedure has two significant parts; simulation 

and analysis of samples and utilizing the combination of 

PSO and LSSVM for accurate prediction, as shown in 

Figure 1.  

 

Figure 1. Flowchart of the structural performance estimation process. 

2.7. PERFORMANCE INDICES 
Root mean square error (RMSE) and the normalized mean        

square error (NMSE) are utilized as performance indices 

 for the ML model (37), which are formulated as follows: 

 
2

1

1
ˆ

n

i ii
RMSE y y

n 
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                                                                          (16) 
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                                                (17) 

Where n is the number of data in the test-set and 
ˆ, ,

i i i
y y y

     

are actual, predicted, and the mean of the actual values, 

respectively. 
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2.8. NUMERICAL EXAMPLE 
The goal of the case study is to establish a hybrid ML 

model for predicting the outputs with high accuracy. To 

this aim, the upper and lower bounds of each design 

parameter are defined for generating different shapes that 

are shown in Table 3.

.   Table 3. Lower and upper bounds of the design variables. 

Parameter 
1

H
 

2
H

 
3

H
 

1
D

 
2

D
 

3
D

 

S
 

G
 

Lower bound (m) 4 5 4 14 14 16 32 0.5 

Upper bound (m) 8 7 8 18 22 20 37 3 

Afterward, a wide variety of geometries comprising 160 

samples are generated by the mentioned method, as shown 

in Figure 2.  

 

Figure 2. Shape generation of GFRP elastic gridshell structure. 

Figure 3 demonstrates the stresses and displacements 

within the sections of all meshed members in an analyzed 

sample. The structure covers an area of about 528 m2 with 

the weight of 8.04 kN. The first output is equal to 13.1 MPa 

and the second output is equal to 2.95 mm/kN.

  

 

 

 

 

 

  

 

(a) H1=5, H2=6, H3=6, D1=17, D2=17, D3=19, S=34, G=1.8; Maximum stress=13.1 MPa 

 

 

 

 

 

 

 

 

 

(b) H1=5, H2=6, H3=6, D1=17, D2=17, D3=19, S=34, G=1.8; Maximum displacement/W=2.95 

mm/kN 

Figure 3. Structural analysis of GFRP elastic gridshell: (a) Stress (MPa); (b) Displacement (mm/kN). 
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Figure 4 depicts the structural performance includes the           

stresses of all the elements, and displacement of all the 

nodes.                  

 (a)                                                                                                     (b)                                                                                           

Figure 4. Structural performance of gridshell: (a) Stress (MPa); (b) Displacement/W (mm/kN). 

The next step is using the generated dataset to train the 

LSSVM model for predicting the estimated performance 

of the structure, during which the PSO is carried out 

simultaneously to increase the accuracy. For this purpose, 

the extracted dataset from the FEA, including 160 samples, 

is divided into two parts with about 0.8 training set ratio; 

130 training and 30 testing models. 

 

 

3. RESULTS AND DISCCUSION 

Setting the parameters of PSO, including cognitive 

constant (C1), social constant (C2), inertial weight (w), 

number of particles, and number of iterations, is the first 

step of the procedure. Sixteen combinations of these 

parameters have been defined in Table 4. Both cognitive 

and social coefficients are considered equal to 0.5, 1, 1.5, 

and 2. The inertial weight is increased from 0.2 to 0.9. 

Population size is set to be 10, 50, and 100 for the iteration 

number of 500, 300, and 100. Subsequently, RMSE and 

NMSE as performance functions in the testing model 

related to both objective functions and σ2 and γ as the 

parameters of LSSVM are presented in Table 5 and Table 

6. Obviously, the lower values of these two indicators lead 

to more accurate results. 

Table 4. Different values of the parameters of PSO algorithm. 

Iteration Size pop w 2C 1C Case 

500 10 0.2 0.5 0.5 1 

300 50 0.5 0.5 1 2 

100 100 0.9 0.5 1.5 3 

500 10 0.2 0.5 2 4 

300 50 0.5 1 0.5 5 

100 100 0.9 1 1 6 

500 10 0.2 1 1.5 7 

300 50 0.5 1 2 8 

100 100 0.9 1.5 0.5 9 

500 10 0.2 1.5 1 10 

300 50 0.5 1.5 1.5 11 

100 100 0.9 1.5 2 12 

500 10 0.2 2 0.5 13 

300 50 0.5 2 1 14 

100 100 0.9 2 1.5 15 

500 10 0.2 2 2 16 
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Table 5. Performance indexes and optimal parameters of the LSSVM model for the output 1. 

1γ 1
2σ RMSE NMSE Case 

1.0772 4.2834 0.000960 0.2036 1 

5.6224 0.0652 0.000531 0.0624 2 

19.5375 0.0122 0.000561 0.0697 3 

1.0491 4.3313 0.000966 0.2062 4 

100 0.0108 0.000581 0.0746 5 

83.6764 0.0100 0.000620 0.0850 6 

1.5864 3.6038 0.000879 0.1707 7 

100 0.0108 0.000581 0.0746 8 

92.3259 0.0100 0.000619 0.0847 9 

100 0.0100 0.000618 0.0846 10 

100 0.0100 0.000618 0.0846 11 

89.9708 0.0100 0.000619 0.0848 12 

100 0.0100 0.000618 0.0846 13 

100 0.0100 0.000618 0.0846 14 

94.1816 0.0100 0.000619 0.0847 15 

100 0.0100 0.000618 0.0846 16   

Table 6. Performance indexes and optimal parameters of the LSSVM model for the output 2. 

γ2 2
2σ RMSE NMSE Case 

1.2117 2.3706 0.000507 0.0332 1 

4.8317 1.5628 0.000224 0.0065 2 

21.7702 0.0134 0.000487 0.0307 3 

1.0655 2.4863 0.000552 0.0395 4 

100 0.0118 0.000515 0.0344 5 

83.6085 0.0100 0.000643 0.0535 6 

1.5646 2.1709 0.000428 0.0237 7 

100 0.0118 0.000515 0.0344 8 

93.5243 0.0100 0.000642 0.0533 9 

100 0.0100 0.000641 0.0531 10 

100 0.0118 0.000515 0.0344 11 

90.0427 0.0100 0.000642 0.0534 12 

100 0.0118 0.000515 0.0344 13 

100 0.0100 0.000641 0.0531 14 

94.3549 0.0100 0.000642 0.0532 15 

100 0.0118 0.000515 0.0344 16 
 

As can be seen in Table 5 and Table 6, Case 2 demonstrates 

the best performance. Thus, the PSO algorithm with C1=1, 

C2=0.5, w=0.5, 50 particles, and 300 iterations is applied 

for more accurate prediction. Consequently, the 

parameters for the first output equal 0.0652 and 5.6224, 

and for the second output are set to be 1.5628 and 4.8317. 

The actual values of the train and test data and the 

predicted amount are compared in Figure 5 and Figure 6, 

which verify the prediction accuracy. 

 

                                                (a)                                                                                   (b) 

 Figure 5. Comparison of the actual and predicted value of train data for outputs: (a) Maximum Stress (MPa); (b) 

Maximum Displacement/Self-weight (mm/kN). 
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                                                (a)                                                                                   (b) 

 Figure 6. Comparison of the actual and predicted value of test data for outputs: (a) Maximum Stress (MPa); (b) Maximum 

Displacement/Self-weight (mm/kN). 

Table 7 and Table 8 present the comparison of measured 

and predicted values of outputs. It is verified from the 

numerical results that the prediction of the second output 

is more accurate compared to the first one, while for both, 

it is accurate enough. 

 

Table 7. Comparison of maximum stress (MPa) measured and predicted at the test-set. 

Case 1 2 3 4 5 6 

Measured 6.44 8.47 7.67 18.20 5.14 9.58 

Predicted 5.84 8.55 6.67 17.30 5.23 9.49 

Case 7 8 9 10 11 12 

Measured 4.38 13.10 6.29 5.91 7.23 8.27 

Predicted 4.72 14.00 6.56 6.38 7.37 8.44 

Case 13 14 15 16 17 18 

Measured 6.93 12.7 4.55 5.37 8.53 16.80 

Predicted 6.63 12.80 4.68 5.59 11.90 18.70 

Case 19 20 21 22 23 24 

Measured 6.13 5.39 7.17 6.94 5.92 5.25 

Predicted 5.91 6.17 6.92 6.54 6.53 5.28 

Case 25 26 27 28 29 30 

Measured 13.00 7.75 9.53 9.51 9.01 11.30 

Predicted 11.80 8.16 10.2 9.47 8.71 10.4 

 

Table 8. Comparison of maximum displacement/self-weight (mm/kN) measured and predicted at the test-set.  

Case 1 2 3 4 5 6 

Measured 1.04 1.67 1.54 0.53 1.75 1.12 

Predicted 1.08 1.66 1.53 0.73 1.74 1.15 

Case 7 8 9 10 11 12 

Measured 1.53 1.21 1.15 3.09 1.74 3.23 

Predicted 1.54 1.21 1.17 3.02 1.74 3.19 

Case 13 14 15 16 17 18 

Measured 1.40 1.25 0.79 1.63 2.10 1.18 

Predicted 1.39 1.25 0.78 1.63 2.03 1.21 

Case 19 20 21 22 23 24 

Measured 1.05 2.55 2.14 3.05 2.36 1.73 

Predicted 1.07 2.48 2.09 3.01 2.34 1.72 

Case 25 26 27 28 29 30 

Measured 1.83 1.20 0.92 1.17 2.88 1.44 

Predicted 1.81 1.17 0.95 1.70 2.98 1.35 

 

The presented results reveal that the proposed method 

significantly reduces the required time for the analysis 

process and can be used as an effective and fast procedure 

to analyze the gridshell structure. 
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4. CONCLUSION 

This paper proposes a structural performance prediction 

approach for GFRP elastic gridshell structures using a 

hybrid ML model. Design parameters including height, 

width in the transversal x-direction, length in the 

longitudinal y-direction, and the grid size are considered as 

input variables. The maximum stress denotes the first 

output, and the ratio of displacement to self-weight is 

adopted as the second output. Several FEA are performed 

to provide the dataset for the ML algorithm. A method 

combining the LSSVM and PSO is proposed for predicting 

structural performance. In summary, the PSO-LSSVM 

with a low error rate is able to predict the structural 

performance of structures, which effectively reduces the 

computational time compared to the FEA. The presented 

hybrid approach is proved to be an efficient tool for the 

analysis of elastic gridshell structures. Generally, the 

proposed hybrid method can be implemented in any 

structure made of beams and demonstrates efficient results 

in accuracy and computational time in comparison with the 

FEA. 
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