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1. INTRODUCTION 

oncrete reservoirs are currently very significant 

despite the many water resources crises, and 

according to forecasts, there are many geopolitical 

problems in the future for water supply [1].On the other 

hand, due to a large number of faults and the high cost of 

construction and maintenance of the water reservoirs, these 

structures should be constructed in the best possible 

conditions and the right place [2]. Therefore, there have 

been many studies in this field [3-5]. Fong showed that part 

of the reservoir fluid under the effect of dynamic excitation 

had long periodic kinetics called the convective part of the 

fluid. Another part of the fluid has a rigid oscillation with 

the reservoir wall, which is called the impulsive part [6]. 

Hassner (1957) proposed a simple form to estimate the 

dynamic effects of fluid in a rigid cylindrical or rectangular 

reservoir under the horizontal motion of earthquake using 

C 
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an approximation method without the use of partial 

differential equations and infinite series [7]. Chen and 

Kianoush, in 2005 and 2006, presented an analytical 

method called the repetitive method for investigating the 

dynamic response of concrete reservoirs [8]. Ghaem 

Maghami and Kianoush, in 2010 and 2011, investigated the 

dynamic behavior of rectangular ground concrete reservoirs 

using two-dimensional and three-dimensional finite 

element methods [9]. In this research, the dynamic analysis 

of concrete reservoir was performed by finite element 

modal analysis and time history, and the effect of different 

elements on dynamic responses was investigated. Razaghi 

and Eshghi (2008) developed fragility curves for metallic 

oil storage tanks. They investigated the effect of two 

variables, including the ratio of height to length of tank and 

ratio of fluid height to tank height using a nonlinear time 

history analysis for 10 different earthquake records. Based 

on the results for the un-anchored metallic oil storage tanks, 

the increase of the two mentioned ratios increased the level 

of failure [10]. Haji Mehrabi et al. evaluated the seismic 

response of tall, medium, and wide cylindrical steel 

reservoirs using the finite element method by Abaqus 

software. The results of this study show that increasing the 

thickness of the tank floor or its wall results in a reduction 

in the maximum amount of floor uplifting and plastic 

rotation at the joint. Also, axial and annular (compressive) 

stresses in un-anchored tanks are always greater than in 

anchored tanks, whereas the phenomenon of surface waves 

in the wide anchored and un-anchored tanks with relatively 

identical geometrical dimensions is approximately similar 

[11]. Rondon and Gezie developed fragility curves for 

metallic oil storage tanks. They investigated the effect of 

two variables, including the ratio of height to length of tank 

and ratio of fluid height to tank height using a nonlinear 

time history analysis for 10 different earthquake records 

[12]. Mobaraki et al. presented fragility curves for high-

capacity metallic fluid storage tanks with concrete bases. 

They used both CA and IDA methods to determine reservoir 

fragility curves. The results of this study show a higher 

probability of failure to the base columns of these 

reservoirs. Specifically, it can be stated that PGA values 

ranging from 0.3 to 0.4 determine the probability of column 

base failure by 80 to 100% [13]. Saha et al. (2015) evaluated 

the seismic response of groundwater storage tanks with base 

separator using the RSM performance level model to 

investigate the uncertainty in seismic separator parameters. 

For this purpose, they used Monte Carlo simulation to 

analyze the data and studied the effect of seismic isolator 

parameters for nonlinear dynamic analysis. They found that 

uncertainty in seismic separator parameters significantly 

influenced the maximum response values of fluid storage 

tanks, leading to a decrease in the amount of failure level 

for the maximum earthquake acceleration parameter as an 

earthquake intensity parameter in the fragility curves of 

these reservoirs [14]. In recent years, the significant 

advancement of software and numerical methods, the 

simulation of failure to tanks has also been carried out with 

considerable accuracy [15-18]. In this study, the seismic 

performance of concrete tanks was investigated by 

considering soil–structure–fluid interaction under near and 

far-field seismic excitations. 

 

2. METHODOLOGY 
In the present study, the SI system was used to introduce the 

materials. The units of this system are presented in Table 1. 

Therefore, the output of the analysis results will also be 

based on the SI system. 

 

Table 1. SI System Units 

Variable Length Mass Time Stress 

Unit of 
measurement 

Meter 

(m) 

Kilogram 

(kg) 

Second 

(S) 

 Pascal (2N/m) 

 

 

2.1. NUMERICAL MODELLING  

2.1.2. Introducing Geometrical Conditions and Specifications of Case Study Materials 

In the numerical simulation, to better evaluate and validate 

the numerical model, it is necessary to compare the results 

with the valid numerical or laboratory results. Therefore, in 

the present study, the geometrical and material properties of 

the studies of Dr. Kianoush and Ghaem Maghami (2010) 

were used [9]. The geometrical shape of the tank is shown 

in Figure 1. As can be seen, in this paper, the flat strain 

space was used to simulate the tank. Table 2 shows the 

geometrical conditions and specifications of the materials 

used in this study. 
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Figure 1. Geometrical conditions of the study tank 

Table 2. Materials specifications and geometrical conditions of the tank 

Materials specifications 

 Concrete density

3

c (kg / m )
 

Water density

3

l (kg / m )
 

Young's modulus of 

concrete 

E(GPa)
 

Poisson's coefficient of 
concrete 

2300 1000 26.44 0.17 

Geometrical conditions of the tank 

tw (meter) HL (meter) Hw (meter) Lz (meter) Lx (meter) 

0.6 5.5 6 30 15 

 

2.1.2. Type of element and how the mesh of the model 

In the finite element method, determining the type of 

element and meshing the model has a significant impact on 

the convergence of analysis and results [19]. Lagrange 

elements have been used to simulate the bed environment 

and concrete tank body. This element is capable of 

introducing the stress-strain behavior of materials and is 

suitable for numerical simulation of solid materials. The bed 

is made for mass simulation. In numerical models where the 

mass-bed is similar, the energy-absorbing boundary should 

be used to prevent reflection of seismic waves in far 

environments. Absorbent element is created by various 

methods such as dampers, springs, and infinite elements. In 

this study, the infinite element is used to create an energy 

absorbent boundary. The finite part has a nonlinear behavior 

model, and the infinite part has only elastic behavior. Figure 

2 illustrates the final meshing pattern of the finite and 

infinite bed. 
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Figure 2. Infinite and finite bed environment 

 

Figure 3. The correct numbering method of the unlimited element in the flat strain and flat stress environment 

To simulate the finite part of the bed from the continuous 

media element an 8-node planar strain with reduced 

integration form (CPE4R) was used, and to simulate the 

infinite part from the semi-infinite element a 4-node flat 

strain with reduced integration formulation (CINPE4) is 

applied (Figure 3). For modeling the concrete tank body, the 

joint between the wall and the floor slab of the tank was 

assumed to be fixed, and the continuous media element of 

flat strain with reduced integration method (CPE4R) was 

used. Dimensions and types of elements are obtained based 

on dimensional analysis of the type and dimension of the 

element. Figure 4 shows the final meshing of the tank. 

 

Figure 4. How meshing the tank 

For simulating fluid, two methods of adaptive meshing 

(ALE) and Coupled Eulerian-Lagrangian (CEL) were used. 

The reason for using two simulation methods for the fluid 

environment is to evaluate the validity of the simulation 
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method of the present study [20, 21]. In the adaptive 

meshing method, the Hugoniot's Us-Up Linear Theory of 

the Mie-Gruneisen equation of state is used. Where Us is 

the shock velocity and Up is the particle velocity which is 

formulated in the following linear equation: 

(1) s 0 PU c sU  

In this equation, c0 is the sound velocity in a fluid medium, 

and its value is 1450 m/s. The value of s in this study was 

zero due to the compactness of fluid medium and the 

transmission of sound velocity by shock. It should be noted 
that the Gruneisen constant is considered zero for water. 
Table 3 shows the parameters of the fluid tank. 

 

Table 3. Water parameters 

Density  

(3kg/m) 

Dynamic viscosity  

(2Ns/m) 

Bulk modulus  

(Gpa) 

1000 0.001 2.3 

 

2.1.3. Boundary conditions and gravity loading 

In the present numerical model, there are two types of 

boundary conditions, including lateral and bed floor. The 

fixed boundary conditions are used for the bed floor, and 

the infinite element is used as the earthquake energy 

absorber for the lateral boundary conditions. Gravity 

loading is applied to the finite bed environment and the 

concrete tank. In fact, the earth's gravity acceleration was 

9.81 m/s2. The software calculated the specific weight of 

each section using gravity acceleration and volumetric mass 

and applied to the model. Figure 5 shows the gravity 

loading. It can be seen that the infinite part will have no 

gravity loading, and the behavior of this part will be 

modeled elastically isotropic. 

 
Figure 5. Gravity loading of the numerical model 

 2.1.4. Introducing interaction 

The interaction used in the present study is summarized in Table 4. 

Table 4. The introduction of the interaction used in the model 

Interaction Tangential Behavior Perpendicular behavior Master level Slave level 

bed-Tank Without friction separationWithout influence and  Bed Tank 

fluid-Tank With friction Without influence Tank Fluid 

2.1.5. The nonlinear behavioral model of materials 

In the present study, an advanced behavioral model of 

damaged plastic concrete was used to introduce stress-strain 

behavior of concrete, and to simulate bed behavior, a non-

linear behavioral model of Mohr-Coloumb was used. In the 

present study, for the finite soil, the Mohr-Coloumb 

behavioral model, along with elastic isotropic behavior was 

used. In this study, two different rupture mechanisms for 
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concrete are considered, including tensile rupture and 

compressive rupture. 

2.2. PROBLEM SOLVING METHOD 

The explicit dynamic method is used to solve the modeling of this research. 

2.2.1. Introducing earthquake records used in research 

The near-fault range is usually assumed to be within the 

range of 10 to 60 km from the active fault. In this range, 

earthquakes usually depend on the rupture mechanism, 

direction of rupture propagation relative to the site, and 

permanent displacement due to faulting. Therefore, the 

accelerograms in the range of less than 10 km and more than 

60 km were used for selection of near and far fault 

accelerograms. It should be noted that due to the significant 

effects of vertical earthquake acceleration in near-fault 

earthquakes, earthquake acceleration has also been applied 

in a vertical direction. Therefore, for more accurate 

estimation, the pair of near and far-field accelerograms have 

been used for identical seismic excitations.In 1999, 7.4 

magnitude earthquake occurred in Kocaeli, the northern 

region of Turkey. 

Figure 6. Kocaeli earthquake displacement spectrum 

The FRIULI earthquake occurred in 1976 in the northern part of Italy. 

 

Figure 7. FRIULI earthquake displacement spectrum 

  HOLLISTER earthquake occurred in 1989 in San Francisco with a magnitude of 6.8. 

 

Figure 8. HOLLISTER earthquake displacement spectrum 

In June 1995, the KOBE earthquake with a magnitude of 6.8 occurred 20 km from Kobe city in Japan. 
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Figure 9. KOBE earthquake displacement spectrum 

The LANDERS earthquake occurred in 1992 in the city of Landers, California. 

 

Figure 10. LANDERS earthquake displacement spectrum 

The Imperial Valley earthquake occurred in 1979 in the southern part of Mexico City with a magnitude of 6.4. 

 

Figure 11. IMPERIALVALLEY earthquake displacement spectrum 

The Chi-Chi earthquake occurred in September 1999 in 

Poli, Taiwan, due to the opening and rapture of the 

Chelungpu fault. The magnitude of the earthquake was 7.5 

Richter. Four aftershocks also occurred with a magnitude of 

more than 6.5 Richter. 

 

Figure 12. CHICHI earthquake displacement spectrum 
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NORTHRIDGE earthquake occurred in June 1994, 30 

kilometers north of Los Angeles, in Northridge. The 

magnitude of the earthquake was 6.9 Richter, with a peak 

acceleration of 0.5g and 19 km deep-focus. 

 

Figure 13. NORTHRIDGE earthquake displacement spectrum  

In September 1979, the 7.8 magnitude Tabas                               earthquake destroyed Tabas and its adjacent villages. 

 

Figure 14. Tabas earthquake displacement spectrum 

Bam earthquake with a magnitude of 6.6 Richter                        occurred in 2003 in the city of Bam in Kerman province. 

 

Figure 15. Bam earthquake displacement spectrum 

2.3. MODEL VALIDATION 

Various analyzes should be performed to ensure the 

accuracy of the numerical model results. In modeling 

associated with soil-structure interaction, boundary distance 

convergence analysis should be performed. The boundary 

distances analyzed in this study are shown in Figure 16. 

Thus, the dependence of the modeling results on these 

boundary distances was evaluated. According to the 

technical literature, the boundary distance of the infinite bed 

was considered half of the total length of the finite bed. 

Infinite lengths were therefore determined and controlled 

for each selection from the finite bed. Therefore, for the 

other two boundary distances, sensitivity analysis of 

boundary distance was performed. The results of this 

analysis for the optimal boundary distances are presented in 
Table 5. According to this table, the most suitable lateral 

boundary distance of finite bed, infinite boundary distance, 

and finite floor bed boundary distance were obtained 80 m, 

80 m, and 100 m, respectively. 
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Figure 16. Boundary distances investigated in the sensitivity analysis 

 

Table 5. Boundary distance values determined based on sensitivity analysis 

Boundary distance  Unit  Displacement  Stress  Optimal boundary 
distance 

bedLateral  (meter) 80 70 80 

Floor bed (meter) 90 100 100 

Infinite bed (meter) meters (half the total length of the finite media) 80 

 

In addition to boundary distance analysis, the type and 

dimensions of the element used in the component analysis 

will have a significant effect on the results. Accordingly, the 

optimal type and length of the element used were 

determined using element type sensitivity analysis and 

element dimension sensitivity analysis. The plain strain 

with dimensions of 7.5, 10, 12.5, 15, and 17.5 cm was 

investigated to analyze the sensitivity of the type and 

dimensions of the four and three nodal elements. Table 6 

shows the type, length, and number of elements used in the 

sensitivity analysis. 

 

Table 6. Type, length, and number of elements and time of sensitivity analysis 

  

node plain strain element with full -Three
integration form 

CPE3 node plain strain element with -Four
reduced integration form 

CPE4R 

Approximate size (cm) 7.5 Analysis time Approximate size (cm) 7.5 Analysis time 

5230 4140 

Approximate size (cm) 10 Analysis time te size Approxima
)cm( 

10 Analysis time 

4760 3450 

Approximate size (cm) 12.5 Analysis time Approximate size (cm) 12.5 Analysis time 

3330 2630 

Approximate size (cm) 15 Analysis time Approximate size (cm) 15 Analysis time 

2710 1920 

Approximate size (cm) 17.5 Analysis time Approximate size (cm) 17.5 Analysis time 

1980 1448 
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Figure 17.Results of element sensitivity analysis 

 
Figure 18. Optimal meshing pattern 

After sensitivity analysis of boundary distance and element 

sensitivity analysis, the results were compared with a 

numerical model of valid papers and references. For this 

purpose, the numerical model of Kianoush and Ghaem 

Maghami [9] was evaluated. For this purpose, the geometry 

and meshing of the numerical model are presented in Figure 

19. It should be noted that for this model, the adaptive mesh 

method is used to simulate the fluid. The comparison of the 

results of the sloshing time history of the free surface of the 

fluid reservoir is shown in Figure 20. The results are 

consistent with the outputs of the Elsentro accelerogram. 

Thus, the graph's ups and downs were similar, with a 

maximum difference of less than 8%. 

 
 

A) The numerical model of Kianoush et al B) numerical model by the present research method 

Figure 19. Comparison of the geometrical conditions of the validation model with the model of Kianoush et al. [9] 
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A) Time history of the reservoir free surface of 

Kianoush model 

B) Time history of the reservoir free surface of the 

present model 

Figure 20. Comparison of sloshing history of free fluid reservoir validation model with Kianoush model. [9] 

2.4. INTRUDUCING NUMERICAL SAMPLES AND RESEARCH METHODS 

In the present study, to accurately evaluate the seismic 

performance of the reservoir, the analytical-statistical 

method of the fragility curve is used. For this purpose, the 

reservoir-fluid-bed system was simulated with advanced 

assumptions, and its results were used for statistical 

analyses using the failure curve. 

 

3. RESULTS AND DISCUSSION 

3.1. FRAGLITY CURVES 

In the present study, the soil-structure-fluid model of the 

concrete reservoir was analyzed using the finite element 

method for 200 real and scaled accelerograms with 0.125 g 

steps. The failure index for each accelerogram was 

determined based on the earthquake intensity parameter. 

The data obtained from numerical analysis were analyzed 

using Easyfit software. The probability density function and 

the fragility curve were obtained for different failure levels. 

In this section, data obtained from numerical analysis of 

Abaqus software and statistical analysis results with Easyfit 

software are presented for fragility curves: low failure under 

far and near field accelerogram and severe damage under 

far and near field accelerogram. The following table shows 

the data obtained from the numerical analysis of the soil-

structure-fluid interaction system for low failure index 

under far-field accelerograms. It should be noted that the 

scaled steps are considered with a range of 0.125 g. If the 

low failure index occurs for numbers between time steps, 

the upstream and downstream failure value is determined 

by interpolating the maximum values. The probability 

density function (data frequency) and the functions of the 

normal distribution, log-normal distribution, and gamma 

distribution for this failure index are shown in Figure 21. As 

can be seen, the log-normal is the most appropriate 

distribution function. Therefore, this distribution function is 

used to analyze the failure curve. Figures 22 and 23 show 

the log-normal function and the fragility curve of the 

concrete tank system under soil-structure-fluid interaction 

for the low failure index under the far-fault accelerograms, 

respectively. The results show that the maximum 

acceleration amplitude for low failure under far fault 

excitation is 0 to about 0.625 g. 10% failure probability is 

obtained For PGA = 0.15g. 30% failure probability is 

reported for the maximum acceleration of less than 0.2 g. In 

fact, by increasing 0.1 for maximum acceleration, the 

probability of failure is increased by 20%. A 90% failure 

probability is obtained for PGA= 0.52g. Eventually, at a 

maximum acceleration of 0.6 g, the low failure will occur 

for far-fault excitations, and this reservoir will be damaged 

for the accelerograms with a maximum value of 0.6 g. 

Table 7. Determining the PGA of low failure for far-field accelerograms 

0.625g 0.5g 0.375g 0.25g 0.125g  

- - - - 0.126 Northridge 

- - - 0.27 Tabas 

- - - - 0.1 Hollster 

- 0.41 - - Imperial valley 

- - - 0.22 Kobe 

- - 0.35 - Bam 

- - 0.32 - CHI-CHI 

- - - 0.25 - Landers 

- - 0.36 - Friuli 

0.605 - - - Kocaeli 
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Figure 21. Probability density function and functions of the normal distribution, log normal, and gamma distribution 

for low failure index under far-field accelerograms  

 

Figure 22. Log normal distribution function for low failure index under far-field accelerograms 

 

Figure 23. Fragility curve for low failure index under far-field accelerograms 

Table 8 shows the results of the numerical simulation of the 

soil-structure-fluid interaction system for the severe failure 

index under far-field accelerograms. Figures 24 and 25 

show the results of the probability density function and 

functions of the normal distribution, log normal 

distribution, and gamma distribution. Analysis of the 

fragility curve for far-field accelerograms in Easyfit 

software (Figure 26) indicates that severe failure will occur 

for the maximum gravity acceleration range of 0.45 to 1.25. 

The failure probability of maximum acceleration was 

reported 10 and 20% for 0.63 and 0.7 g, respectively, and 

30% for PGA = 0.76. The probability of severe failure of 

the concrete tank for the peak of 0.9 g is about 60%, and by 

increasing this peak up to 1.1 g, the probability reaches 

90%. The results show that for the maximum acceleration 

of more than 1.25 g, the probability of severe failure for this 

Probability Density Function

Histogram Normal Gamma Lognormal

x

0.60.560.520.480.440.40.360.320.280.240.20.160.120.080.040

f(
x)

0.4

0.36

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0

Probability Density Function

Histogram Lognormal

x

0.60.560.520.480.440.40.360.320.280.240.20.160.120.080.040

f(
x)

0.4

0.36

0.32

0.28

0.24

0.2

0.16

0.12

0.08

0.04

0

Cumulative Distribution Function

Sample Lognormal

x

0.60.560.520.480.440.40.360.320.280.240.20.160.120.080.040

F
(x

)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0



J. Civil Eng. Mater.App. 2020 (March); 4(1): 55-73 
·························································································  

 
67 

reservoir will be definite, and the reservoir will collapse. 

Previous studies [22, 23] have also shown that this 

acceleration will lead to such a result. The probability of 

severe failure of the concrete tank understudy for the 

maximum 0.9 g is about 60%, and by increasing this limit 

to 1.1 g, the probability is 90%. The results show that for 

the maximum acceleration of more than 1.25 g, the 

probability of severe failure for this reservoir will be 

definite, and the reservoir will collapse. That would be the 

result. 

Table 8. Determining the PGA of low failure for far-field accelerograms 

1.5g 1.125g 1g 0.875g 0.75g 0.625g 0.5g 0.375g 0.25g 0.125g  

- - - - - 0.624 - - - - Northridge 

- - - - 0.76 - - - - - Friuli 

- - - - - 0.58 - - - Tabas 

1.13 - - - - - - - - Imperial valley 

- - - - 0.72 - - - - Kobe 

- - - 0.945 - - - - - Bam 

- - 0.89 - - - - - - CHI-CHI 
- - - 0.83 - - - - - Landers 

1.22 - - - - - - - - Hollster 

- 1.25 - - - - - - - - Kocaeli 

 

 
Figure 24. Probability density function and functions of the normal distribution, log normal, and gamma distribution 

for low failure index under far-field accelerograms  

 

Figure 25. Log normal distribution function for low failure index under far-field accelerograms 
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Figure 26. Fragility curve for low failure index under far-field accelerograms 

The maximum acceleration values for the numerical 

samples under near-fault excitations with a low failure 

index are presented in Table 9. In these conditions, 

according to Figures 27 and 28, the best function is log-

normal distribution. The fragility curve obtained from this 

distribution function in Figure 29 shows that the range of 

low failure in the near-fault field would be 0.045 to 0.3 

gravity acceleration. So the maximum acceleration of 0.08 

and 0.09 indicate a 10 and 20% failure probability. 60% and 

90% failure probability were reported at the peak of 0.15 g 

and PGA = 0.23g, respectively. The low failure will occur 

for near-field accelerograms with a maximum acceleration 

of more than 0.3 g. 

 

Table 9. Determining the PGA of low failure for far-field accelerograms 

1.5g 1.125g 1g 0.875g 0.75g 0.625g 0.5g 0.375g 0.25g 0.125g  

- - - - - - - - - 0.08 Northridge 

- - - - - - - - - 0.1 Tabas 

- - - - - - - - - 0.07 Hollster 

- - - - - - - 0.3 - Imperial valley 

- - - - - - - - 1.4 Kobe 

- - - - - - - - 1.35 Bam 

- - - - - - - - 1.55 CHI-CHI 

- - - - - - - - - 0.11 Landers 

- - - - - - - - 1.8 Friuli 

 

- 

- - - - - - - 0.2 Kocaeli 

 

 

Figure 27. Probability density function and functions of the normal distribution, log normal, and gamma distribution 

for low failure index under far-field accelerograms 
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Figure 28. Log normal distribution function for low failure index under far-field accelerograms 

 

Figure 29. Fragility curve for low failure index under far-field accelerograms 

Table 10 shows the results of the numerical simulation of 

the reservoir-reservoir-foundation interaction system for 

the severe failure index under near-field accelerograms. 

Figures 30 and 31 show the results of the probability density 

function and the functions of the normal distribution, the log 

normal distribution, and the gamma distribution. It can be 

seen that the most appropriate distribution function is log-

normal. So, this distribution function is used to analyze the 

fragility curve. According to the fragility curve obtained in 

Easyfit software (Figure 32), it is observed that for the 

maximum acceleration of 0.55 g to 0.6 g, the probability of 

failure is 10 and 20%, respectively, and the 30% failure rate 

is determined at PGA = 0.6g.  The maximum acceleration 

of 0.75 g for the severe failure level is 60%, and only by 

reaching PGA = 0.8g the probability of failure increase by 

90%. For maximum acceleration more than 1/1 gravity 

acceleration, severe failure occurs in this tank. 

 

Table 10. Determining the PGA of low failure for near-field accelerograms  

1.5g 1.125g 1g 0.875g 0.75g 0.625g 0.5g 0.375g 0.25g 0.125g  
- - - - - 0.55 - - - Northridge 

- - - - - 0.6 - - - Tabas 

- - - - - - 0.5 - - - Hollster 

- - 0.81 - - - - - - Imperial valley 

- - - - 0.75 - - - - - Kobe 

- - - 0.79 - - - - - Bam 

- - 0.88 - - - - - - CHI-CHI 

- - - - - - 0.41 - - Landers 

- - 0.94 - - - - - - Friuli 

- 1.1 - - - - - - - Kocaeli 
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Figure 30. Probability density function and functions of the normal distribution, log normal, and gamma distribution 

for low failure index under near-field accelerograms  

 

Figure 31. Log normal distribution function for low failure index under near-field accelerograms 

 

Figure 32. Fragility curve for low failure index under near-field accelerograms 

To comparing the results, all the fragility curves are plotted 

in Figure 33. Comparison of the fragility curves shows that 

the probability of a low failure for the near-field 

accelerograms occurs at the less maximum acceleration 

than the far-field and is plotted as S. This means that the 

dispersion of maximum acceleration in the near-field 

excitations is less than similar far-field excitations. The 

results for the low failure index show that for maximum 

earthquake acceleration more than 0.3 g, the reservoir 

structure will be damaged under near-fault excitation. 

However, for similar far-field excitations, this failure has 

been reported for maximum acceleration more than 0.6 g. 

Therefore, due to the frequency contents and pulse effects 

and vertical earthquake acceleration in near-field 

excitations, a low failure at less maximum acceleration has 

occurred. So that for low failure f (t) = 1 the maximum value 
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of near-field acceleration is half of the maximum near-field 

acceleration. 

 

Figure 33. Comparison of far and near field curves with low and severe failure index 

For severe failure, critical conditions are obtained for the 

near field. So that for similar failure probability, severe 

failure in the far-fault state is obtained at more maximum 

accelerations. In severe failure for two diagrams of far and 

near-fault the graph is as horizontal S. Therefore, a wider 

PAG amplitude is obtained so that for near field conditions 

this maximum acceleration range is from 0.4 to 1.1 gravity 

acceleration and for far-field conditions, the range of 

maximum acceleration is from 0.55 g to 1.25 g. For the 

concrete tank understudy, the probability of severe failure 

will most definitely occur for near-field excitations at the 

maximum acceleration of 1 g, while this failure occurs for 

far-field excitations at 1.25 g. 

 
 
4. CONCLUSION 
- The proposed modeling method of the present study is 

accurate enough to simulate the reservoir-bed-fluid 

interaction system and can be used for seismic parametric 

studies. 

- To obtain accurate numerical results in problems with 

mass bed simulation, boundary distance convergence 

analysis for lateral boundaries, bed boundary is of particular 

importance. The results cannot be assured if the boundaries 

are inappropriate. 

- The dynamic explicit method is a suitable tool for 

analyzing dynamic problems of soil-structure-fluid 

interaction. This method has a simplifying assumption for 

analyzing problems in which determining the appropriate 

stability time is of particular importance. In case of failure 

to choose the right time of stability, the analysis will 

diverge. The stability time is directly related to the smallest 

dimension of the element and is inversely related to the 

shear wave velocity of the materials. Therefore, special 

attention should be paid to the convergence analysis of 

dimension and type of the element. 

- The results show that the log normal function is the most 

appropriate distribution function for all the fragility curves, 

and this distribution function is used to analyze the fragility 

curve. 

- The results show that the maximum acceleration 

amplitude for low failure probability under far-fault 

excitations is in a range of 0 to 0.6 g. For PGA = 0.15g a 

10% failure probability is obtained and 30% failure 

probability is reported for the maximum acceleration of less 

than 0.2 g. In fact, by increasing only 0.1 of maximum 

acceleration, the failure probability is increased by 20%. 

- For the maximum acceleration of 0.3 g3, a 60% 

probability of failure is recorded, and a 30% increase is 

obtained for a maximum of 0.2 to 0.3 gravity acceleration. 

A 90% probability of failure is obtained for PGA = 0.52g, 

and eventually, at a maximum of 0.6 g, low failure occurs 

for far-field excitation, and the low failure occurs in this 

reservoir for the accelerograms with a maximum of 0.6 g. 

- Severe failure will occur for the maximum acceleration 

range of 0.45 to 1.25 gravity acceleration. Failure 

probability for the maximum accelerations of 0.63 and 0.7 

g is reported 10 and 20%, respectively, and 30% for PGA = 

0.76. 

- The severe failure probability of the concrete tank is 

determined by about 60% for a maximum of 0.9 g, and by 

increasing this maximum up to 1.1 g, the failure probability 

increases by 90%. The results show that for maximum 

acceleration more than 1.25 g, the probability of severe 

failure is definite for this tank. 



J. Civil Eng. Mater.App. 2020 (March); 4(1): 55-73 
·························································································  

 
72 

- The low failure range in the near-fault field will be 0.04 to 

0.3 gravity acceleration. So that the maximum acceleration 

of 0.08 and 0.09 indicate a 10% and 20% failure probability. 

A 0.15 g maximum indicates a 60% probability of failure, 

and a 90% probability of failure is reported at PGA = 0.23g. 

The low failure will occur in this reservoir for near-field 

accelerograms with a maximum acceleration of more than 

0.3g. 

- For a maximum acceleration of 0.5 g to 0.6 g, the 

probability of failure is 10% and 20%, and a 30% 

probability of failure is determined at PGA = 0.6g. The 

maximum acceleration of 0.75 g for the severe failure level 

is 60%, and only at PGA = 0.8g the probability of failure 

increase by 90%. For maximum acceleration more than 1/1 

gravity acceleration, severe failure occurs in this tank. 

- Comparison of fragility curves shows that the low failure 

probability for near-field accelerograms occurs at the less 

maximum acceleration compared to the far-field 

accelerograms and is plotted as perpendicular S. This means 

that the dispersion of maximum accelerograms in the near-

field excitations is less than in the far-field excitations. The 

results for the low failure index show that for maximum 

earthquake acceleration more than 0.3 g, the failure will 

occur in reservoir structure under near-fault excitations, 

whereas for similar far-field excitations, this failure is 

reported for maximum accelerations more than 0.6 g. 

Therefore, due to the frequency contents and pulse effects 

and vertical earthquake acceleration in near-field 

excitations, a low failure has occurred at less maximum 

acceleration. So that for low failure f (t) = 1 the maximum 

value of near-field acceleration is half of the maximum 

near-field acceleration. 

- For severe failure, critical conditions are reported for the 

near- field. So that for similar failure probability, severe 

failure is achieved in far-fault state at more maximum 

accelerations. In severe failure mode for two near and far 

fault diagrams, the graph is as vertical S. Therefore, the 

wider PAG amplitude is obtained. So that the maximum 

acceleration amplitude for near-field conditions is from 0.4 

to 1.1 gravity acceleration and for far-field conditions is 

from 0.55 g to 1.25 g. For the concrete tank understudy, the 

probability of severe failure will most definitely occur for 

near-field excitations from the maximum acceleration of 1 

g, while this failure occurs for far-field excitations from the 

maximum acceleration of 1.25 g. 
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