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1. INTRODUCTION  

tructural engineers are aware of the intrinsic safety 

properties of concrete exposed to fire (non-

flammability at high temperatures). However, the 

tendency of concrete for spalling at high temperatures is 

an important defect, and recently many researchers have 

conducted studies on this issue. Fibers are classified into 

the groups of natural and synthetic fibers. Examples of 

fibers commonly used in FRC (fiber-reinforced concrete) 

include steel, glass, carbon, polymer fibers, and cellulose 

fibers. In general, the reinforcing fibers cannot replace 

rebars in structural members because they deliver a 

different function in concrete. The most important role of 

fibers in FRC is to control cracking and change the 

concrete behavior when cracks develop in the concrete 

grout. Researchers have proven that the addition of 

polymer fibers to concrete improves its flexibility and 

toughness. Flexural toughness is the measure of the 

energy absorbed by a substance under the effect of plastic 

deformations. Substances with low toughness generally 

experience brittle fractures. Adequate toughness is 

substantially important for a safe structural system. 

Adding fibers considerably improves ductility and 

flexural toughness. An adequate bond between the fibers 

and the cement matrix is essential for improving the 

flexural toughness [1-3]. Celik et al. [4] studied the 

behavior of concrete reinforced with synthetic fibers at 

high temperatures. The results of their experiments 

indicated that adding different types of synthetic fibers 

S 
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improves the mechanical characteristics of concrete, such 

as its compressive strength and flexural strength under the 

effect of temperature. Microstructural analyses also 

adequately confirmed the bond between the cement 

matrix and fibers. Yurdakul et al. [5] assessed the 

mechanical properties and durability of concrete 

reinforced with metakaolin-based polypropylene fibers 

under the effect of high temperatures. They realized that 

the specimens containing the fibers had more flexural 

strength than the primary specimens at high temperatures. 

The ultrasonic testing, microstructural analysis, and 

visual examinations confirmed this finding. 

Sukontasukkul et al. [6] studied the performance of 

polymer-fiber reinforced concrete. They found out that in 

the fiber-reinforced concrete specimens, the flexural 

toughness and ductility of the specimens grew drastically 

following the cracking. Felipe et al. [7] studied the 

behavior of polypropylene fiber-reinforced concrete 

under the effect of furnace temperature and compared it 

to fire temperature. They reported that adding fibers to 

concrete prevents the collapse and delamination of 

concrete up to a temperature of 600 C . They also 

concluded that adding fibers does not contribute to the 

prevention of a decrease in the concrete weight. 

Researchers [8-9] also analyzed the properties of concrete 

reinforced with polypropylene and steel fibers when 

exposed to fire heat. They stated that steel fibers are more 

effective than polymer fibers in controlling fire-induced 

cracks. In fact, polymer fibers melt in concrete and 

increase the steam exhaust pressure. First, they increase 

the concrete strength, but it loses its positive effect on 

concrete with an increase in temperature over time, 

causing extensive porosity in concrete and reducing 

concrete strength. Li et al. [10] assessed ultra-high 

performance concrete reinforced with hybrid fibers (steel 

and polymer) for the prevention of collapse with high 

efficiency at furnace temperature. The results of their 

structural analysis indicated that the hybrid fiber-

reinforced concrete specimen showed more coherence 

than the steel fiber-reinforced concrete specimen at high 

furnace temperatures. Mazin et al. [11] examined the 

effects of fire heat on polypropylene fiber reinforced 

reactive powder concrete beams. They concluded that the 

beams containing 0.25 volumetric percentage had 

doubled toughness in relation to time as compared to the 

fiber-free sample, while the beams containing 0.75 and 

1.25 volumetric percentages fully maintained their 

toughness when exposed to the fire heat and did not 

undergo complete rupture. Eidan et al. [12] assessed the 

residual mechanical properties of polypropylene fiber-

reinforced concrete after heating it in a furnace. One of 

their primary goals was to determine the critical 

temperature (400 C ). At temperatures higher than the 

aforementioned temperature, the effects of adding fibers 

were considerably evident on concrete. They also realized 

that the fibers did not positively affect the modulus of 

elasticity at temperatures higher than 600 C . They 

reported that in fiber-reinforced concrete, polypropylene 

fibers with a length of 12mm outperformed the 6-mm 

fibers when exposed to heat. Abaeian et al. [13] explored 

the effect of high temperature on the mechanical behavior 

of high-strength concrete reinforced with macro 

polypropylene (HPP) fiber. According to their findings, 

adding this fiber has no drastic effect on the compressive 

strength of high-strength concrete at normal temperatures.  

However, these fibers drastically affect this type of 

concrete at high temperatures by preventing its collapse 

and preserving its coherence. Ding et al. [14] analyzed the 

pore pressure of self-consolidating concrete reinforced 

with different fibers exposed to fire and analyzed the 

effect of fibers on the change in the concrete pore 

pressure. They proposed an empirical formula to 

determine the maximum relative pore pressure in fiber-

reinforced concrete exposed to fire. They realized that 

polypropylene fibers could be among the fundamental 

factors for reducing the concrete pore pressure at high 

temperatures. Moreover, these fibers could contribute to 

the preservation of concrete consolidation at high 

temperatures. 

Maluk et al. [15] studied the effect of adding 

polypropylene fibers on the heat-induced spalling 

tendency of concrete. They reported that these fibers 

drastically reduce concrete spalling at high temperatures. 

They also indicated that the tendency for spalling at 

higher temperature decreases in concrete with an increase 

in fiber length. Park Jung et al. [16] analyzed the positive 

effects of adding synthetic fibers on the residual 

mechanical properties of ultra-high performance concrete 

after exposure to ISO 834 standard fire. SEM (scanning 

electron microscope) images were used to assess the 

condition of concrete specimens containing synthetic and 

steel fibers following exposure to fire and to analyze the 

porosity variations of the cement matrix. They concluded 

that steel fibers could not prevent concrete spalling and 

crushing at high temperatures. However, the polymer 

fibers improved flexural toughness at high temperatures 

as compared to the initial specimens. Abid et al. [17] 

assessed short-term strain and long-term strain in steel 

fiber reinforced reactive powder concrete and concluded 

that short-term strain and long-term strain grow by 

increasing stress and temperature. The ascending trend in 

thermal strain up to 150 C  was slow. However, a sudden 

increase was observed at higher temperatures, and the 

growing trend was controlled and enhanced by adding 

steel fibers. Wang et al. [18] studied the effect of adding 

polypropylene (PP) fibers on rubber concrete based on its 

mechanical performance, durability, and microstructure. 

Specimens were prepared with two rubber volumes of 10 

and 15%, which were combined with 0.5 volumetric 

percentage of fiber. Their results indicated that 

compressive strength can increase to 40MPa with PP 

fibers and rubber grains. Moreover, the ultrasonic wave 

speed properly reflected the good quality of the concrete 

specimens. The failure of morphology and ESEM 

imaging indicated the positive effect of the rubber grains 

and PP fibers on post-cracking propagation. The stable 

uses can be restored by combining macro glass fibers and 

recycled rubber. Folino et al. [19] analyzed the failure and 

mechanical properties of fiber-reinforced concrete beams 

on the actual scale. Afterward, the experimental results of 

the four- point bending test on different concrete beams 

containing metal fibers were presented and discussed. It 

was indicated that fibers improve the structural coherence 

in behavior after the exertion of maximum load, thereby 

improving the shear and flexural strengths of the beams 

and the fiber-reinforced concrete specimens. Jose et al. 

[20] analyzed the mechanical behavior and rupture in 

models of fiber-reinforced concrete exposed to heat. The 

destruction of the pores structure due to the damage 

caused by heat was analyzed through X-ray radiography. 

Besides, the mechanical properties and rupture of the 

specimens were analyzed at the room temperature and 
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300 C . Finally, a relationship was established between 

the intra-matrix damage to the concrete grout and the 

corresponding mechanical behavior, revealing that the 

propagation of the intra-matrix damage and its effect on 

mechanical behavior varied by the pore size. Moreover, 

the fibers in concrete change the structure of the pores. 

Chen et al. [21] studied the use of recycled aggregate 

concrete. One of the main concerns about using such 

concrete types in buildings is their spalling and collapse 

during fires. In this study, this weakness was considerably 

overcome by adding fibers to the concrete mix. The 

results of their experiment revealed that adding steel 

fibers postpones the onset of cracking in concrete and 

reduces the crack width. Hence, it considerably increases 

the failure of energy and toughness of the specimens 

following their exposure to high temperatures.Mai et al. 

[22] reported that the polypropylene fibers in fiber-

reinforced concrete are oxidized when exposed to furnace 

heat and drastically lose their flexibility. Lau et al. [23] 

reported a decrease in the compressive strength of fiber-

reinforced concrete exposed to furnace heat. In this study, 

the shear strength and modulus of rupture of polyolefin-

fiber reinforced concrete are studied at different 

temperatures based on the results of previous studies. 

 

 

2. MATERIALS AND METHODS 
Concrete aggregates account for approximately 60 to 80% 

of concrete volume, and many of the physical, chemical 

and mechanical properties of concrete are directly linked 

to the characteristics of the aggregates. Aggregates are 

almost cheap and do not have complex reactions with 

water. Hence, aggregates are usually used as neutral 

fillers in concrete. Some of the properties of aggregates 

that are important in concrete include porosity, gradation, 

moisture absorption, shape and surface texture, crushing 

strength, modulus of elasticity, and type of the harmful 

substances. Table 1 shows some of the important 

characteristics of these aggregates. The gradation diagram 

Figure1 is also presented in the following. In this research, 

Kerman type 2 cement is used. The chemical and physical 

properties of this cement type are listed in Table 2 These 

properties comply with the ASTM C150-07 standard [24]. 

According to the national concrete standard, drinkable 

water can be used in concrete. However, previous records 

indicate that drinkable water does not suit concrete and it 

should not be used. Water is used in three forms in 

concrete: for washing the aggregates, as one of the 

constituents of concrete, and for concrete curing. The 

drinkable water in Rafsanjan City, Kerman Province, was 

used in this study. The use of superplasticizers in concrete 

reduces cement consumption and simplifies the 

compaction and mixture of concrete. Superplasticizers 

have more powerful effects than plasticizers. These 

substances preserve concrete coherence and increase its 

efficiency without reducing its strength. Moreover, these 

substances are capable of reducing concrete water 

demand by 25 to 35% and preventing bleeding. The future 

development of concrete is determined by its additives, 

especially the concrete superplasticizers. In this research, 

a PCE-based (polycarboxylate ether) superplasticizer, 

which is capable of preserving efficiency for a long time 

and is made by Alborz Chemicals Company, is used. The 

physical and the chemical properties of this 

superplasticizer are listed in Table 3.  Polyolefin fibers 

(Figure 2) with the technical specifications listed in Table 

4 are used in this study.  

 

Table 1. The aggregates physical properties (sand and gravel) 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 1. Gradation curve of aggregates mixture 
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Table 2. Chemical specifications of Kerman type 2 Portland cement 

 

Table 3. Technical specifications of the carboxylate superplasticizer 

particulars values 

Superplasticizer carboxylate 

Appearance Light 

Density 1.09 g/cm3   

pH value 6-8 

Specific gravity 1.1 

 

 

Figure 2. Polyolefin fibers 

 

Table 4. Polyolefin fibers specifications 

 

 

 

 

2.1. CNCRETE MIX 

After optimizing the aggregates mix and determining the 

mix ratios based on the national mixing method, the 

concrete specimens were built in accordance with the 

standard. In the present project, mix designs in all 

concrete tests are listed in Table 5 and Table 6. After 

mixing the main ingredients of concrete without any 

additive, the main ingredients were mixed for 2 minutes 

in a mixer. Afterward, the fibers and subsequently the 

superplasticizer were added to the mix and sampling was 

performed when the materials were fully mixed. 

 

Table 5. Naming the mix designs 

Mix Design Name Description 

CN , N (Normal) Control  

CP, P ) polyolefin) Polyolefin-fiber reinforced concrete 
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Table 6. Mix design 

 

 

 

 
3. DISCUSSION AND RESULTS 
3.1. TENSILE AND FLEXURAL TESTS 

The tensile strength tests (split-half tests) were conducted 

in accordance with the ASTM C496/C496M-04 standard 

[25] (10x20 test cylinders) and flexural strength tests were 

performed in accordance with ASTM C78-08 [26] 

(45x15x15cm specimens with 30-cm spans) using 

different volumetric percentages at furnace temperature 

(Figure 3 and Figure 4). Prior to the tests, all the  

 

 

specimens were submerged and cured for 28 days in 

laboratory conditions. The results of the specimens  

exposed to heat at the 400 and 600 C are listed separately 

in Tables 7 and 8. The diagram of each test and visual 

reports of the failure types of the specimens are also 

presented.  

 

 

Figure 3. Temperature-furnace time diagram 

 

Figure 4. The furnace and specimens 
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Table 7. The results of the tensile strength test at different temperatures 

Mix design 
Tensile strength (Mpa) 

25 ⁰ C 400 ⁰ C 600 ⁰ C 

CN( Normal) 3.8 3.7 2.1 

CP 0.5% 4.1 4.1 2 

CP 1% 4.6 4.5 1.7 

CP 1.5% 4.9 5 1.2 

 

 

Figure 5. Results of the Brazilian tensile test  

 

 

Figure 6. Images of the tensile strength test 

 

Table 8. Results of the flexural strength test at different temperatures 

Mix design 
Flexural strength (Mpa) 

25 ⁰ C 400 ⁰ C 600 ⁰ C 

CN( Normal) 3.7 2.3 1.6 

CP 0.5% 4.4 3.5 1.4 

CP 1% 5.1 4.1 1.3 

CP 1.5% 5.8 4.2 1.2 
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Figure 7. Results of the flexural strength test (four-point test) 

 

 

Figure 8. Images of the flexural strength test 

 

It could be concluded that the fibers play their role in 

improving tensile and flexural strength prior to the 400

C  temperature. Thereafter, the fibers gradually lose their 

role as the furnace temperature rises, reducing concrete 

strength. The specimens in the control design showed a 

lower decrease in strength than the fiber-reinforced 

specimens at 600 C . A drastic decrease in strength was 

observed over time, with an increase in the volume of 

fibers at the mentioned temperature. Considering the 

results of similar studies, it could be concluded that the 

addition of fibers has no drastic effect on the compressive 

strength of high-strength concrete at the normal 

temperature. However, the addition of fibers to this type 

of concrete has a drastic effect at high temperatures on the 

prevention of collapse and preservation of concrete 

coherence [13]. Adding 1.5 volumetric percent of fibers 

to concrete resulted in a 56% increase in its flexural 

strength (the stress corresponding to the emergence of the 

first crack) at the 25 C  temperature, which could be 

attributed to the bond established between the concrete 

nanocracks. Adding fibers to concrete beams can 

contribute to the improvement in the modulus of rupture 

and change the concrete failure type from the brittle 

failure to the ductile failure [19]. Since adding fibers 

destroys the continuity of pores and the bonds between 

the flow channels in concrete [27], oxidation of fibers and 

loss of its modulus in the fibers at a high temperature not 

only destroy these bonds but also increase the 

development of pores, which is harmful to fiber-

reinforced concrete. In this study, when concrete was 

placed in the furnace at high temperatures (600 C ), this 

condition was exacerbated [22].  At times of fire, the pore 

pressure of the steam output increases significantly. 

Consequently, the fibers melt and fill the pores, thereby 

increasing strength at their melting point. With an 

increase in temperature, the fibers lose their properties 

and a descending trend in concrete strength starts. 

However, in concrete specimens that are exposed to 

furnace heat, strength decreases because the fibers 

melting mechanism is not present in concrete [8-9].  
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4. CONCLUSION 
The results of analyzing the experimental data are 

presented in this study. It is tried to meet the accuracy 

standards in all the stages, from building the specimens to 

the failure of the specimens. The results of this study are 

as follows. 

1. Due to the role of fibers in sewing the cracks, 

brittle rupture and crushing of the specimen are 

prevented. In fact, rupture among the fibers is 

accompanied by ductility and the specimen 

significantly maintains its consolidation. 

2. Since adding fibers ruins the continuity of pores 

and the bonds with the flow channels in concrete, 

it is among the important causes of consolidation 

and coherence of concrete and prevention of 

spalling.  

 

 

3. The loss of concrete homogeneity and oxidation 

of the fibers in concrete at high temperatures are 

among the causes of the abrupt decrease in the 

tensile strength of concrete at 600 C . 

4. Adding fibers to concrete beams can help 

improve the modulus of rupture and change the 

concrete failure type from the brittle type to the 

ductile type.  

5. The behavior of polymer fibers in concrete 

specimens exposed to furnace temperature 

differs from the behavior of concrete specimens 

directly exposed to fire.  
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