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1. INTRODUCTION 

arthquakes can cause various types of damage 

to structures, including residential buildings, 

infrastructure, and other constructions [1–3]. 

The effects of earthquake on structures can be 

categorized into several types: 

- Ground Shaking: The primary cause of earthquake 

damage to man-made structures is ground shaking, 

which can lead to structural damage and collapse, 

resulting in injury or death to occupants. The 

intensity of an earthquake is usually measured using 

the Richter scale [2,4,5].                       

- Landslides: Earthquakes can trigger landslides, 

which can cause catastrophic damage to homes and 

towns. He violent shaking of the ground produces the 

greatest property losses and personal injuries [6].  

- Surface Faulting: The vibrations from an 

earthquake can lead to ground displacement and 
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surface rupture, causing damage to roads and 

buildings [2]. 

- Fire: Earthquakes can cause fires due to ruptured 

gas lines or other infrastructure, leading to additional 

damage and loss of life [7,8]. 

- Building Collapse: Earthquakes can cause buildings 

to collapse due to loss of bearing strength, which 

occurs when the soil supporting a building liquefies 

and loses strength, allowing the structure to settle and 

tip [9–11]. To minimize the effects of earthquakes on 

structures, engineers and architects use seismic load 

analysis methods that determine the strength and 

stability of buildings and other constructions. These 

methods help ensure the safety of residential 

structures during an earthquake. However, even with 

these measures in place, earthquakes can still cause 

significant damage [12,13]. 

Control systems in structures refer to the use of 

various techniques and devices to reduce vibrations, 

energy consumption, and improve the overall 

performance of the structure [14]. Structural control 

systems can be classified into two main categories: 

- Passive Control Systems: These systems do not 

require external power or feedback to operate. They 

rely on the inherent properties of the structure or 

additional devices to dissipate or counteract the 

vibration energy. Examples of passive systems 

include base isolation, tuned mass dampers, and 

viscous dampers [15,16]. 

- Active Control Systems: These systems require 

external power and feedback to adjust their 

parameters or apply forces to the structure. They can 

actively monitor and control the structure's response 

to vibrations [17–19]. 

Lian et al. [20] investigated the effect of strain rate on 

the failure parameters of concrete beams with small 

span to height ratio. The results showed that the effect 

of the opening to height ratio on the performance of 

the member is high. Takadate and Uematsu [21] 

investigated the vibration mechanism of long-span 

flat roofs with different span-to-height ratios. Li et al. 

[22] conducted an experimental analysis and 

simulation of a shell structure with a large opening. 

They consider the impact of the span length on the 

performance level as effective and certain. Meng et 

al. [23] evaluated the collapse resistance of steel 

frame structures with different spans using finite 

element models. The results showed that increasing 

the opening dimensions and decreasing the resistance 

have a significant relationship. Tuan Pham et al. [24] 

investigated the load path mechanisms in beams with 

asymmetric span length. They considered the span to 

height ratio to be effective on seismic performance. 

Embaby et al. [25] determined the ultimate capacity 

of steel structures with large spans. The results 

showed that the presence of the large spans in the 

structure creates a different performance. Yu and 

Fang [26] investigated the structural damage model 

for the elastoplastic design of large-span structures. 

Gao et al. [27] investigated the performance of multi-

span beams with graded graphene reinforced foams. 

The results showed that the taper ratio and the 

configuration of multi-span beams lead to large 

changes in the critical buckling load. Ci et al. [28] 

investigated the effect of axial load and span ratio on 

the seismic behavior of prefabricated structures for 

RC boundary elements. This research is an important 

reference for building design regulations. Artar and 

Carbas [29] designed the optimal size of steel frame 

structures under seismic excitations. Modeling was 

done with Sap2000 and Matlab software. The results 

were obtained by presenting the algorithm. 

Kalilzadeh Vahidi and Chavoshani [30] investigated 

the effect of increasing the span length and floor 

height on the progressive failure of reinforced 

concrete frames. The research was done with 

Opensees software and nonlinear static analysis 

method. The results showed that frames with 10%, 

20% and 30% openings in the structure, their 

resistance decreased by 23, 31 and 39%. Zheng and 

Bay [31] investigated the effects of impact loads on 

the mechanical performance of the truss structure. In 

this research, different ratios of span length to height 

were investigated. The results showed a direct 

relationship between the span length and the stress. 

Wang et al. [32] investigated the effect of span length 

to height ratio of reinforced concrete slabs under blast 

loading. The results show the impact of the 

investigated index on the structural failure. Hasemi 

Razavi et al. [33] investigated the effect of span 

length on the progressive collapse behavior of steel 

anchor-resistant frames. They used several nonlinear 

static and dynamic analyzes to analyze three frames 

in the high seismic zone with different span lengths. 

The results showed that the beams and columns (in 

different span length to height ratios) have sufficient 

strength to withstand the drop of the column on the 

first story. 
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2. METHODOLOGY 
2.1. Near and Far-Fault Earthquakes 

Near and far-fault ground motions refer to the seismic 

waves generated by an earthquake in relation to a 

specific location. Near-fault ground motions occur 

close to the fault rupture, while far-fault ground 

motions occur at a significant distance from the fault 

rupture. Research has shown that near-fault ground 

motions possess significantly long-period pulses in 

the acceleration time history, which are consistent 

with velocity and displacement histories. The long-

period response of near-fault ground motions is more 

excessive than that of far-fault ground motions. 

Studies have also demonstrated that near-fault 

ground motions can cause extensive damage to 

structures, and they are characterized by long-

duration acceleration and pulse-like features in their 

velocity time history. Additionally, near-fault ground 

motions have been found to result in larger response 

values for structures compared to far-fault ground 

motions. Therefore, understanding the characteristics 

and effects of near-fault and far-fault ground motions 

is crucial for assessing the seismic hazard and 

designing earthquake-resistant structures [34–39]. 

Near-fault ground motions possess several unique 

characteristics that set them apart from far-fault 

ground motions. These characteristics include: 

- Long-period pulses: Near-fault ground motions 

often contain strong coherent dynamic long-period 

pulses in their acceleration time history, which are 

consistent with velocity and displacement histories 

[40]. 

- These long-period responses are more excessive 

than those of far-fault ground motions. High-

frequency content: Near-fault ground motions have a 

higher frequency content in their velocity time 

history, which contributes to their distinctive seismic 

wave characteristics [41]. 

- Forward-directivity: Near-fault ground motions 

exhibit forward-directivity, which means that the 

motion is more pronounced in the direction of the 

fault. Fling-step, hanging-wall, and significant [41]. 

- Vertical ground motion: Near-fault ground motions 

can be characterized by fling-step, hanging-wall, and 

significant vertical ground motion, which are not 

commonly observed in far-fault ground motions. 

Permanent ground displacement: Near-fault ground 

motions often involve permanent ground 

displacement, which is not typically observed in far-

fault ground motions [41–43]. 

- Damage potential: Due to their long-duration 

acceleration and pulse-like features in their velocity 

time history, near-fault ground motions can cause 

extensive damage to structures [41]. 

Understanding these characteristics of near-fault 

ground motions is crucial for assessing seismic 

hazards and designing earthquake-resistant structures 

[2,41]. 

Far-fault ground motions, also known as far-field 

ground motions, have the following characteristics: 

- Low Destructiveness: Far-field earthquakes are 

generally less destructive than near-field motions due 

to their low peak ground acceleration, peak ground 

velocity, and Arias intensity [44,45]. 

- Distinctive Features of Near-Fault Earthquakes: 

Near-fault earthquakes may contain distinct forward 

directivity pulse and fling step motion, which are not 

typically present in far-fault ground motions [44,45]. 

- Seismic Parameters: Far-fault ground motions differ 

from near-fault ground motions in terms of seismic 

parameters such as long-period velocity or 

displacement pulse-like records, which are typically 

very intense [44,45]. 

In summary, far-fault ground motions are 

characterized by their lower destructiveness 

compared to near-fault motions and the absence of 

distinctive features such as forward directivity and 

fling effect. Seismic parameters also differ between 

far-fault and near-fault ground motions, with far-fault 

motions exhibiting specific intense characteristics 

[41–46]. Figure (1) shows the characteristics of near 

and far-fault acceleration. 

https://www.sciencedirect.com/science/article/pii/S0267726113001693
https://www.sciencedirect.com/science/article/pii/S0267726113001693
https://citeseerx.ist.psu.edu/document?doi=a5136f305af4af75f2d48b5cd635be06101f3a7c&repid=rep1&type=pdf
https://citeseerx.ist.psu.edu/document?doi=a5136f305af4af75f2d48b5cd635be06101f3a7c&repid=rep1&type=pdf
https://citeseerx.ist.psu.edu/document?doi=a5136f305af4af75f2d48b5cd635be06101f3a7c&repid=rep1&type=pdf
https://citeseerx.ist.psu.edu/document?doi=a5136f305af4af75f2d48b5cd635be06101f3a7c&repid=rep1&type=pdf
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Figure 1. Characteristics of near and far-fault ground motions [47]. 

 

In this research, a 5-story steel frame with 3 spans is 

modelled in Sap2000 [48]. Gate bracing systems 

have been modelled and analyzed with the modal 

linear dynamic method. Figure (2) shows the 

designed models of gate bracing system in the current 

research. 

 

          

Figure 2. Gate Bracing Frame (GBF) in the current research, modelled with Sap2000 

 

Three different ratios K in the bracing frame are 

included in the software modelling. The 

specifications of the types of frames are presented in 

Table (1). In the modelling, St37 steel was used in the 

structure, whose specifications are presented in Table 

(2). 

 

Table 1. Typing of frames designed in the current research 

Row Left and right span length (m) L = Middle span length (m) h = Story height (m) 
𝑲 =

𝑳

𝒉
 

1 5 3 3 𝐾1 = 1 

2 5 6 3 𝐾2 = 2 

3 5 9 3 𝐾3 = 3 
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Table 2. Characteristics of St37 steel [49] in the modelling of steel structures 

Poisson's 

ratio 

Modulus of 

elasticity 

(GPa) 

Effective 

tensile stress 

)Kg/𝐜𝐦𝟐) 

Effective 

tensile stress 

)Kg/𝐜𝐦𝟐) 

Minimum 

tensile stress 

)Kg/𝐜𝐦𝟐) 

Minimum yield 

stress )Kg/𝐜𝐦𝟐) 

Parameter 

(Unit( 

0.3 2.039× 1010 42.55 × 106 27.6 × 106 27 × 106 24× 106 Value 

The ground under the structure has a high seismic risk 

(A=0.3) [50]. The usage type of the structure is 

residential (I=1) [50]. The soil under the structure is 

type Ш. The coefficient C (earthquake parameter) 

and the coefficient K (elevation parameter) have been 

calculated according to Iran standard 2800-fourth 

edition [51,52]. The seismic parameters of the 

structures are presented in Table (3). 

 

Table 3. Seismic parameters of steel structures [50–52] 

𝐂 𝐁 𝐍 𝐁𝟏 𝐓𝟎 (𝐒𝐞𝐜) 𝐓𝐒 (𝐒𝐞𝐜) 𝐒𝟎 𝐒 𝐊 𝐓 (𝐒𝐞𝐜) 𝐇 (𝐦) 
Frame 

Type 

𝐂(𝐑𝐮=𝟑.𝟓) = 𝟎. 𝟐𝟒 2.75 1 2.75 0.15 0.7 1.1 1.75 1 0.61 15 5-Story 

H: structure total height, T: period time, 𝐁𝟏: spectrum shape factor, N: spectrum correction factor, B: building 

reflection factor, 𝐑𝐮: structure behavior factor and 𝐒, 𝐒𝟎 , 𝐓𝐒 and 𝐓𝟎 are seismic parameters. 

Structure loading includ1es gravity load (dead load 

equivalent to 500 kg/m and live load equivalent to 

200 kg/m) [53] and lateral seismic load. By 

performing linear static analysis, members in 5-story 

steel frames were determined. Sections of members 

are presented in Table (4). All the frames were 

designed by LRFD method [53]. 

 

Table 4. Members details in a 5-story steel frames 

Section Desired Story Member Frame Type 

IPE140 1-2 

Beam 

5-Story 

IPE120 3-4 

IPE100 5 

TUBO60X30X5.9 1-2 

Brace TUBO60X30X5 3-4 

TUBO60X30X4 5 

HE180 1-2 

Column HE160 3-4 

HE140 5 

On January 17, 1995, a major earthquake with a 

magnitude of 7.2 struck near Kobe, Japan, causing 

significant damage and loss of life. The earthquake, 

known as the Great Hanshin Earthquake or the Kobe 

Earthquake, resulted in over 6,000 deaths and left 

more than 45,000 people homeless. The earthquake 

caused massive damage to Kobe Steel, a major 

Japanese steelmaker, which sustained 102 billion yen 

in damages. The company's Kobe Head Office was 

completely destroyed, and one of its blast furnaces 

had to be shut down. However, Kobe Steel managed 

to recover quickly, with the blast furnace back in 

operation just two and a half months later. The 

earthquake also had a significant impact on the 

structures, lifelines, and fire protection systems in the 

area. Traditional houses with heavy tiled roofs, which 

were designed to resist frequent typhoons, suffered 

serious structural damage when their wooden 

supports gave way, causing the roofs to crush the 

unreinforced walls and floors in a pancake collapse. 
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Newer homes with reinforced walls and lighter roofs 

were more susceptible to typhoons but less likely to 

experience the same level of damage [54,55]. The 

1940 El Centro earthquake was a powerful seismic 

event that occurred on May 18, 1940, with a 

magnitude of 6.9 Mw and a depth of 16 km. It had a 

significant impact on the United States and Mexico, 

causing 6 million dollar in total damage and resulting 

in 9 deaths and 20 injuries. The earthquake was the 

result of a rupture along the Imperial Fault, with its 

epicenter 5 miles north of Calexico, California. A 

strong secondary earthquake with a magnitude of 5.5 

followed a little more than an hour after the main 

event. In recent times, El Centro and its surrounding 

areas have experienced several smaller earthquakes. 

For example, a magnitude 3.7 earthquake was 

reported on December 5, 2023, occurring 16 miles 

from El Centro at a depth of 5.3 miles [55,56]. In 

present research, Dynamic analysis has been done 

with earthquakes in Kobe (near-fault) and El Centro 

(far-fault). Accelerometers of Kobe and El Centro are 

shown in Figures (3) and (4). 

 

Figure 3. Accelerometer of the Kobe earthquake (near-fault) [57] 

Figure 4. Accelerometer of the El Centro earthquake (far-fault) [58] 

 

3. RESULTS AND DISCUSSION 
3.1. Acceleration 

In this section, the roof acceleration in the Kobe and 

El Centro earthquakes is presented. 10 seconds of 

peak acceleration changes are selected and presented 

in the acceleration-time graphs. 

 

 

Figure 5. Acceleration-Time graph of the roof in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 
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Figure 6. Acceleration-Time graph of the roof in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 

 

Figures (5) and (6) showed that increasing the K 

index does not necessarily increase the acceleration 

of the structure. At some times, the acceleration in the 

primary structure (with index K1) is higher than other 

structures. In Figures (7), the maximum gradient and 

the numerical average resulting from the modal 

dynamic analysis are presented. Figures (7) show that 

K2 index has the highest acceleration (maximum and 

average) compared to K1 and K3 indexes. The 

average acceleration in the K2 index is equal to 0.288 

and 0.142 in the earthquakes of Kobe (near-fault) and 

El Centro (far-fault), respectively. Therefore, the 

average acceleration in near-fault earthquake is more 

than twice that of a far-fault earthquake. In K1 and 

K3 indexes, near-fault earthquakes have higher 

average acceleration compared to far-fault 

earthquakes. 

 

Figure 7. Average and maximum acceleration in 5-story steel structures with K1, K2 and K3 indexes under the Kobe and El Centro 

earthquakes 
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3.2. Modal Damping Energy 

In this section, energy damping energy due to modal 

analysis is presented and compared in K1, K2 and K3 

indexes. Also, equations and linear diagrams of 

Modal damping energy index are provided. 

 

Figure 8. Modal damping energy in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 

 

Figure 9. Modal damping energy in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 

 

The results showed that the value of Modal damping 

energy increases with the increase of K value. The 

slopes of the linear graphs K1, K2 and K3 are equal 

to 1.54, 4.2 and 6.35, respectively. The linear slope 

shows the influence of the K index on the increase of 

Modal damping energy. Figure (9) showed that 

increasing the K index of the far-fault area does not 

necessarily increase Modal damping energy. The 

results are different in the near-fault and far-fault 

areas. In the near-fault area, the relationship between 

K index and Modal damping energy is direct. In the 

far-fault area, there is no relationship between K 

index and Modal damping energy. Therefore, the 

distance between the location of the earthquake and 

the structure is very effective on the influence of the 

K index. 
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3.3. Base Shear Force 

In this section, the base shear force in structures with indexes K1, K2 and K3 is presented. 

 

Figure 10. Base shear force in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 

 

Figure (10) showed that with the increase of the K 

index, the base shear force in the 5-story structure 

under the Kobe earthquake increases. The difference 

between the values of K1, K2 and K3 is very large. 

Therefore, the relationship between the increase of 

the K index and the base shear force in the near-fault 

area is direct. Figure (11) show that with the increase 

of the K index in the 5-story structure under the El 

Centro earthquake, unlike the Kobe earthquake, the 

base shear force does not necessarily increase. In 

some cases, the K2 index is greater than the K3 index, 

and the K1 index is always smaller than the K2 and 

K3 indexes. Therefore, it cannot be said with 

certainty that with the increase of the K index in the 

far-fault area, the base shear force increases. 

 

Figure 11. Base shear force in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 

 

 

 

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9 10

B
a

se
 S

h
ea

r 
(K

N
)

Time (s)

K1 K2 K3

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9 10

B
a

se
 S

h
ea

r 
(K

N
)

Time (s)

K1 K2 K3



J. Civil Eng. Mater.App. 2023 (December); 7(4): 225-242  
·························································································  

 
234 

3.4. Roof Displacement 

In this section, the roof displacement with indexes K1, K2 and K3 is presented. 

 

Figure 12. Roof displacement in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 

Figure (12) showed that in the near-fault area, there 

is no clear relationship between K index and 

Displacement. Most of the time, K1 index is higher 

than K2 and K3 indexes, and the increase in the span 

length did not increase the displacement of the 

structure. Figure (13) showed that there is no clear 

relationship between the changes of K index and 

Displacement. K1 index has more displacement 

compared to K2 and K3 indexes, but at some times 

(between 8 and 9 seconds), displacement in K3 index 

is more than K2. Therefore, there is no direct 

relationship between K and Displacement indexes in 

the far-fault area. 

 

Figure 13. Roof displacement in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 
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Figure 14. Axial Force in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 

Figure 15. Axial Force in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 

Figures (14) and (15) show that there is no direct 

relationship between the K index and the axial force 

in the brace member in near and far-fault areas. In 

some times of loading the structure, an axial force in 

the structure with K2 and K3 indexes is more than the 

structure with K1 index. Therefore, the average and 

maximum axial force in the brace member is 

checked. 

 

Figure 16. Axial Force in 5-story steel structures with K1, K2 and K3 indexes under the Kobe and El Centro earthquakes 
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Figure (16) showed that the increase of the K index 

in the steel frame does not necessarily increase an 

axial force of the brace, and this result exists in the 

near and far-fault area. The results showed that the 

K2 index, except for one case, has the highest axial 

force values compared to the K1 and K2 indexes. 

3.6. Column Shear Force 

In this section, the column shear force (the element 

marked with a green tick in Figure 2) has been 

investigated. Also, the numerical values of the 

average and maximum of columns shear force are 

presented.

Figure 17. Column shear force in 5-story steel structures with indexes K1, K2 and K3 under the Kobe earthquake 

 

Figure 18. Column shear force in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 
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index K1 has the highest column shear force in the 

near- fault and far-fault areas. Column shear forces in 

structures with indexes K2 and K3 are close to each 

other. Figure (19) shows the average and maximum 

shear force in the column. 

Figure 19. Column shear force in 5-story steel structures with K1, K2 and K3 indexes under the Kobe and El Centro earthquakes 
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3.7. Support Reaction Force

In this section, the maximum support force in a 5-

story steel structure is presented. Also, the average 

and maximum numerical values of the support 

reaction force are provided. 

 

Figure 20. Support reaction force in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 

 

Figure 21. Support reaction force in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 

Figures (20) and (21) showed that the structure with 

index K2 has the highest support reaction force. Also, 

increasing the value of the K index does not 

necessarily increase the support reaction force. These 

results exist in both near and far-fault areas. In Figure 

(22), the average and maximum support reaction 

forces in different K indexes are presented. 

Figure 22. Support reaction force in 5-story steel structures with K1, K2 and K3 indexes under the Kobe and El Centro earthquakes 
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3.8. Story Displacement 

In this section, the Story displacement in the near and far-fault areas is presented. 

 

Figure 23. Story displacement in 5-story steel structures with K1, K2 and K3 indexes under the Kobe earthquake 

 

Figure 24. Story displacement in 5-story steel structures with K1, K2 and K3 indexes under the El Centro earthquake 
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more than K3 index. Therefore, the increase in the K 

index and the story displacement in the near  and far-

fault areas are not directly related. 
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present research. The results obtained from the 

present research showed that modal damping energy 

and base shear force indexes have a direct 

relationship with the K index. This result exists only 
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Therefore, it confirms the results of the current 

research and presents the effect of geometric 

characteristics on the seismic performance of the 

structure. Vikas and Chey [67] investigated the 

seismic performance of RC structure with 

geometrical irregularities. They obtained results that 

confirm the results of the present study. 

 

4. CONCLUSION 

There is no direct relationship between the K index 

and the acceleration of the structure. This result is 

valid in areas near-fault and far-fault. Therefore, the 

increase or decrease of the K index cannot be used as 

a criterion to check the acceleration of the structure. 

In the near-fault area, according to the magnitude of 

the applied earthquake, the modal damping energy is 

influenced by the K index. Therefore, the K index and 

modal damping energy are directly related, and 

increasing the K index causes a great increase in 

modal damping energy in the structure. Also, 

decreasing the K index causes a decrease in modal 

damping energy in the structure. In the far-fault area, 

due to the reduction of applied earthquake 

magnitude, modal damping energy is not affected by 

the K index. The results showed that increasing the K 

index has caused changes, but it has no direct 

relationship with modal damping energy. Therefore, 

it can be said that in the near-fault area, K index and 

modal damping energy have a direct relationship, and 

in the far-fault area, K index and modal damping 

energy do not have a direct relationship. 

In the near-fault area, the K index and the base shear 

force in the structure have a direct relationship. This 

result is due to the large magnitude of the earthquake 

in the near-fault area. In the far-fault area, there is no 

direct relationship between the K index and the base 

shear force in the structure. 

In the near and far-fault areas, the K index and the 

roof displacement are not directly related. Therefore, 

changes in the K index do not cause specific changes 

in the roof displacement. 

In near and far-fault areas, the K index and the axial 

force in the gate brace system do not have a direct 

relationship. Therefore, changes in K index do not 

cause specific changes in the near-fault area. The 

increase in the K index causes an increase in the 

average axial force in the gate brace system. In the 

far-fault area, due to the small magnitude of the 

earthquake, the increase in the K index causes a 

decrease in the average axial force in the gate brace 

system. 

The K index and the column shear force are not 

directly related in the near and far-fault areas. 

Changes in the K index do not cause specific changes 

in the column shear force. 

K index and support reaction force are not directly 

related in near and far-fault areas. In the near-fault 

area, due to the high Richter magnitude of the 

earthquake, increasing the index K causes an increase 

in the support reaction force. In the far-fault area, due 

to the low power of the earthquake on the structure, 

increasing the K index does not cause a specific 

change in the support reaction force of the structure. 

The K index and the story displacement, in the near 

and far-fault area, do not have a direct relationship. 

In the near-fault area, due to the magnitude of the 

earthquake's Richter scale, the increase in the K index 

causes a decrease in the story displacement. This 

trend also exists in the far-fault area with less 

intensity. 
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