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1. INTRODUCTION  
rdinary Portland Cement (OPC) as the main 

constituent of conventional concrete is the most 

widely used cementitious material in the 

construction industry [1-4]. Portland cement production 

has major environmental disadvantages, including high 

energy consumption, natural resources exhaustion and 

carbon dioxide (CO2) emissions [1,5]. Production of 1 ton 

of OPC releases approximately 1 ton of CO2 into the 

environment [6-8] and consumes 1.5 tons of raw materials 

[9]. On the other hand, pollution and global warming 

phenomenon have become a major concern in developed 

countries [2]. Global warming is caused by the emission 

of greenhouse gases and among the greenhouse gases, 

CO2 plays a major role in global warming with a 60% 

share [10]. The production process of OPC is accounted 

for 7 to 10% of global CO2 emissions [11]. Our country 

(Iran), as the fifth largest producer of OPC worldwide, is 

also exposed to these environmental problems. In recent 

years, geopolymers have been introduced as a new 

cementitious material and green alternative to OPC. 

Geopolymers were first developed by Davidovits, as a 

new family of binders of inorganic origin. Usage of 

geopolymer cements can reduce carbon dioxide emissions 

by 44-64% compared to Portland cement [12]. It also 

improves waste management which has a positive impact 

on the environment [13]. Regarding civil engineering 

applications, Geopolymer Concrete (GPC) has showed 

enhanced physical and mechanical properties over 

conventional concrete, e.g. higher mechanical strength 

[14-16], enhanced durability [17], higher resistance to 

elevated temperatures and fire [18-20], lower 

permeability, improved resistance to solvents and acids 

[21,22] and lower creep effects [23,24]. Geopolymers are 

inorganic alumino-silicate materials produced from raw 

O 
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materials, rich in silica (SiO2) and alumina (Al2O3), in 

combination with an alkaline activator solution [25,26]. 

The geopolymerization process involves a substantially 

fast chemical reaction under alkaline condition on Si-Al 

minerals, that results in a three-dimensional polymeric 

chain and ring structure consisting of Si-O-Al bonds [27-

29]. Davidovits utilized the name “Poly(sialate)” to 

indicate the chemical composition of geopolymers, in 

which “Poly” represented the polymeric nature, and 

“sialate” was an abbreviation for the silicon-oxo-

aluminate chain. He has also distinguished 3 types of 

monomers that form the basis of the geopolymer 

structure:the Poly(sialate) type (PS), the Poly(sialate-

siloxo) type (PSS) and the Poly(sialate-disiloxo) type 

(PSDS) [31,32]. The alkaline activator solution is one of 

the two main constituents of geopolymers, playing a 

significant role in the formation of Al and Si crystals, and 

is normally chosen based on Na and K (solvent alkali 

metals) solutions. The most convenient alkali solution 

used in geopolymerization is a compound solution of 

NaOH or KOH and Na2SiO3 or K2SiO3 [32]. The 

aluminosilicate source, also known by other names such 

as raw material, geopolymerization source and source 

material, plays the most important role in geopolymer 

cements, as the supplier of Si and Al. The raw material, 

depending on required characteristics, cost and 

availability, can be of natural origin (e.g. zeolite), 

synthetic (e.g. metakaolin) or waste materials (e.g. fly ash 

or Granulated Ground Blast Furnace Slag (GGBFS)).As 

aforementioned, concrete, and especially GPC, has many 

advantages but the disadvantages of concrete also have to 

be considered. Low tensile strength and consequent low 

ductility and high brittleness, is of the major 

disadvantages of concrete. Introduction of fibers in the 

concrete mix is a solution developed in the past decades 

to overcome this issue. Usage of fibers to enhance brittle 

composites dates back to 3500 years ago when straw-

reinforced sun-dried bricks were used to build the 57-

meter-high hill of Aqar Quf near Baghdad [33]. Horse tail 

hair is also used to reinforce mortar and plaster [34]. 

Application of different types and geometries of fibers in 

concrete, “Fiber Reinforced Concrete (FRC)”, has shown 

to effectively control crack propagation and improve 

physical and mechanical properties of the concrete 

composite, e.g. tensile strength [35]. Nowadays, fibers are 

widely used to improve a variety of properties such as: 

compressive, flexural and tensile strengths, resistance to 

impact and extreme temperatures, etc. in different types 

of concrete. These fibers range from metallic to polymeric 

fibers but research on concrete reinforced with polymer-

based fiber types, due to their economic benefit over steel 

fibers, is high on the agenda. Polyolefin is a relatively new 

type of polymer-based fiber. These fibers are used to 

make elasto-plastic concrete which has shown to increase 

flexural toughness, fatigue strength and impact resistance 

and reduce crack propagation in concrete composites 

[36]. On the other hand, in recent years, application of 2-

part and multipart hybrid fibers to enhance various 

properties of the concrete composite has gained 

significant interest. Fiber Reinforced Geopolymer 

Concrete (FRGPC) is a new type of concrete with higher 

ductility than convenient concrete [37] andhas been the 

subject of many recent studies to investigate its potential 

pros and cons.Gao et al [38] conducted research on GPC 

reinforced with 6 and 12mm long steel fibers and showed 

that the shorter fiber is more effective in controlling micro 

cracks, while the longer fiber provides ductility at 

extensive cracking scenarios. Furthermore, a hybrid fiber 

configuration showed to yield optimal crack-control 

features and prevents cracking in both macro and micro 

phases. Asrani et al [39] investigated slag-based FRGPC 

using Polypropylene or PP (13 mm long), glass (15 mm 

long) and 3D-steel (60 mm long) fibers of 0.3, 0.3 and 1.6 

% volume content, respectively, and as single and hybrid 

fiber GPC configurations. The results showed that 

incorporating only PP fiber results in a significant 

increase (about 108%) of flexural strength over plain 

GPC. Hybridization showed to further improve strength 

characteristics, e.g. a hybrid PP and steel FRGPC 

composite displayed 30 and 200 % growth in compressive 

and flexural strength over plain GPC, respectively. 

Alberti et al [40] studied the properties of Polyolefin 

fiber-reinforced concrete enhanced with steel fibers in 

low ratios and concluded that the use of polyolefin fibers 

improves mechanical strength and provides considerable 

ductility and flexural toughness. Han et al [41] 

investigated the effect of Polyolefin fibers on the 

specifications of concrete containing silica fume. The 

results showed that using these fibers resulted in a 13% 

increase in flexural strength as well as a 70% decrease in 

crack propagation. Additionally, the specimens 

containing Polyolefin fibers exhibited 2 times higher 

impact resistance than those containing steel fibers and 14 

times more than the control (no fiber) specimens. Deng et 

al [42] also studied the effect of macro-Polyolefin fibers 

on the concrete properties. The researchers observed the 

positive effects of Polyolefin fibers in preventing crack 

propagation by increasing the fiber content. Celik et al 

[36] studied the effect of different fiber types for FRGPC, 

on its resistance to elevated temperatures. Polyolefin, 

Basalt, Modified Polyamide and PVA fibers and 

incorporated as non-hybrid composites were considered. 

The results showed that the use of Polyolefin fibers at the 

optimum percentage (i.e. 1.2%) increased compressive 

strength by 4.7% and flexural strength by 25% compared 

to the control (non-fiber) specimen. In this experimental 

study, new types of hybrid polymer fibers, including: long 

twist Polyolefin fibers and short modified Polypropylene 

fibers, was used to manufacture FRGPC composites. 

After conducting initial tests to achieve the final mix 

design of the GGBFS-based geopolymer concrete, the 

effect of hybrid Polyolefin fibers on water absorption 

capacity, specific density and compressive, tensile and 

flexural strengths of FRGPC, were studied. In this regard, 

FRGPC and non-fiber specimens were produced. 

Thereafter, the specimens were subjected to the 
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compressive, indirect tensile and 3-point flexural strength 

tests as well as water absorption capacity and specific 

density investigations. Finally, the obtained experimental 

results were collected, analyzed and reported. 

2. MATERIALS AND METHODS 
2.1. MATERIALS  

The X-Ray Fluorescence (XRF) chemical analysis of the 

GGBFS used in this study is given in Table 1. NaOH with 

98% purity and liquid Na2SiO3 with SiO2/Na2O molar 

ratio of 2, were used to prepare the alkaline activator 

solution. Table 2 represents the chemical analysis of the 

Na2SiO3, NaOH, and KOH substances. 

 

Table 1: XRF chemical analysis of GGBFS 

LOI Cl SO3 MnO MgO K2O Na2O Fe2O3 CaO Al2O3 SiO2 Chemical 
substance 

0.5 0.02 1.2 1.58 9.8 0.68 0.62 0.6 37.2 11.2 34.4 Weight % 

 

 
Table 2: Chemical analysis of NaOH and Na2SiO3 solutions 

NaOH Na2SiO3 

Chemical substance Result Unit Chemical substance Result Unit 

NaOH 98 % SiO2 30 % 

Na2CO3 1 % Na2O 14.5 % 

NaCl 200 ppm Water 55.5 % 

Fe 6 ppm    

SiO2 15.7 ppm    

Appearance White flake Appearance Clear liquid 

 

The aggregates were obtained from quarries around 

Tehran. Aggregates with granular sizes of 7-10 mm was 

used as coarse aggregate (sand), and < 4 mm sized 

aggregates were used as fine aggregate. Fine and coarse 

aggregates were sieved according to ASTM C33 [43]. The 

fineness modulus (using ASTM C136 [44]) and sand 

equivalent (using ASTM D2419 [45]) values of the fine 

aggregates were measured equal to 3.01 and 73, 

respectively. To reduce water content and improve 

workability of concrete, polycarboxylate-based Super 

Plasticizer (SP) was incorporated. The fibers used in this 

study was obtained from Nanonakh Sirjan Company. The 

main properties of the fibers are presented in Table 3 and 

Figure 1 displays the fibers used in this study. 

 

Figure 1: Image of fibers used in this study 
 

Table 3: Properties of fibers 

Hybrid fibers Properties 

12,55 Length (mm) 

0.91-0.95 Density (gr/cm3) 

350-750 Tensile strength (MPa) 

4.5 Module of elasticity (GPa) 

No Water absorbency 

Excellent Alkaline and acid resistant 

165 Melting point (°C) 
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2.2. EXPERIMENTAL PROGRAM 

In this part, 5 mix designs were defined, as illustrated in 

Table 4. To optimize the fiber volume content, different 

values of fiber volume content were added to the GPC 

specimens: 0.15%, 0.2% and 0.25%. Initially, the alkaline 

activator solution, constituting of NaOH (14M), 

Na2SiO3, SP and the extra water (according to each mix 

design) are combined and allowed to cool for 24 hrs. In 

the mixing process, the aggregates, GGBFS and fibers 

were first dry mixed in the mixer for 3 minutes. Next, the 

alkaline activator solution was added and the concrete 

was mixed for a further 2 minutes. Subsequently, 

compressive (100x100x100 mm cubes), tensile (200x100 

mm cylinders) and flexural (100x100x500 mm beams) 

specimens were molded and vibrated for 10 seconds on a 

vibrating table. The specimens were cured in the oven (90 

˚C) for 24hrs. After the curing process, the specimens 

were allowed to rest at laboratory ambient temperature. 

The specimens were subjected to the 7- and 28-day 

compressive, tensile (Brazilian) and 3-point flexural 

strength tests, as well as water absorption capacity and 

specific density tests. 

 
Table 4: Fiber Reinforced GPC mix designs 

Fiber content 
(%) 

Extra water 
(Kg/m3) 

SP 
(Kg/m3) 

Fine 
aggregates 

(Kg/m3) 

Coarse 
aggregates  

(Kg/m3) 

Na2SiO3 
(Kg/m3) 

NaOH (Kg/m3) GGBFS 
(Kg/m3) 

Mix ID 

0 10 8 840 840 120 80 400 Control 

0.15 10 8 840 840 120 80 400 F-0.15 

0.2 10 8 840 840 120 80 400 F-0.2 

0.25 10 8 840 840 120 80 400 F-0.25 

The various tests were conducted according to standard 

testing procedures: compressive strength test according to 

the BS1881: Part116 [46], indirect tensile strength test 

according to ASTM C496 [47], 3-point flexural strength 

test according to ASTM C293 [48] and ASTM C1018 

[49], water absorption capacity and specific density tests 

according to ASTM C642 [50]. 

 

3. RESULTS AND DISCUSSION 
3.1.WATER ABSORPTION AND SPECIFIC 

DENSITY 

Figures 2 and 3 display the specific density and water 

 

 

 

 

 absorption capacity of the FRGPC and unreinforced GPC 

specimens, respectively. 

 
 
 
 

 
Figure 2: Specific density of the FRGPC and control specimens 
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Figure 3: Water absorption of the FRGPC and control specimens 
 

The specific density of the control specimen 

(unreinforced GPC) is calculated equal to 2338 kg/m3. 

Usage of fibers in the GPC shows to reduce specific 

density with fiber volume content. Also, increasing the 

fiber content resulted in a further reduction in the specific 

density of the specimens, so that in the FRGPC containing 

0.25% fibers, almost 3% of the specific density was 

reduced. This can be explained to the lower specific 

density of the fibers compared to the GPC matrix. The 

specific density of the fibers used is in the range of 0.91-

0.95 gr/cm3 (equivalent to 910-950 kg/m3), thus reducing 

the specific density of the FRGPC specimens compared 

to the control specimen. The water absorption capacity of 

the control specimen is around 4.3%. Water absorption 

capacity of the FRGPC composites reduces with fiber 

content. The random dispersion of the micro and macro 

size fibers allow them to stitch micro cracks and prevent 

development of new ones in the geopolymer matrix. This 

mechanism results in the higher density of the 

geopolymeric matrix structure and consequent reduction 

in water absorption capacity [51]. 

 

3.2. COMPRESSIVE STRENGTH 

The 7- and 28-day compressive strengths of the FRGPC 

composites are illustrated in Figure 4. The 7 and 28-day 

compressive strengths of the control specimen was 95.5 

and 101 MPa, respectively. In the hybrid FRGPC 

composites, 0.15, 0.2 and 0.25% fiber content resulted in 

approximately 2.2, 6 and 3.4% improvement in 

compressive strengths compared to the control specimen, 

respectively. This issue may be due to the reinforcement 

of the concrete matrix by hybrid fibers and the 

improvement of the Interfacial Transition Zone (ITZ). 

The ITZ, is the boundary area between the cement paste 

and the surface of aggregates, fibers or rebar which plays 

an important role in permeability, durability and strength 

of concrete. The microstructures of the ITZ and the 

cement paste are different and compared to the cement 

paste, the ITZ microstructure has more porosity and micro 

cracks. The thickness of the ITZ depends on parameters 

such as fiber type, cement type, pozzolan type, etc. [52]. 

Using nanomaterials and fibers can strengthen the ITZ 

and improve the mechanical properties of concrete. But 

on the other hand, with increasing fiber content from 0.2 

to 0.25%, the compressive strength decreased slightly. All 

fibers used were of polymeric materials, which due to 

high flexibility, can result in fiber balling in the concrete 

mix at high fiber contents. This phenomenon leads to 

perforations in the mortar matrix and subsequent internal 

flaws in interfacial transition zones and thus reduction in 

GPC compressive strength [53]. From the results 

obtained, in general, the fiber used had no significant 

influence on compressive strength of the GPC specimens. 
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Figure 4: Compressive strength of the FRGPC and control specimens 

 

3.3. TENSILE AND FLEXURAL STRENGTHS 

The 7- and 28-day tensile strengths of the FRGPC and 

control specimens are represented in Figures 5. The 

lowest 7- and 28- day tensile strength were measured in 

the control specimen (3.72 and 4.4 MPa, respectively), 

and the 0.2% hybrid FRGPC specimen (F-0.2) showed 

the highest 7- and 28-day tensile strengths (4.61 and 5.45 

MPa, respectively) among all FRGPC specimens. In the 

hybrid FRGPC composites, 0.15, 0.2 and 0.25% fiber 

content results in approximately 12, 24 and 22% 

improvement in tensile strengths compared to the control 

specimen, respectively. The obtained results indicated 

that using hybrid fibers improved tensile strength values 

compared to the control specimen and optimal results are 

achieved at 0.2% fiber content. Further increase in fiber 

content from 0.2 to 0.25% caused a slight decrease in 

tensile strength compared to the optimum value (0.2%). 

 

 
Figure 5: Tensile strength of the FRGPC and control specimens 

 

The 7- and 28-day flexural strengths of the FRGPC and 

control specimens are illustrated in Figure 6. The 7- and 

28-day flexural strengths of the control specimen were 

5.82 and 7.11 MPa, respectively. Using 0.15, 0.2 and 

0.25% (by volume) of hybrid fibers in GPC mixture, yield 

to approximately 56, 33 and 51% increase in flexural 

strengths compared to the control specimen, respectively. 

The optimal hybrid fiber content for maximum flexural 

strength improvement was 0.15%. However, the flexural 

strength decreases from 0.15 to 0.2% fiber content, and 

increases from 0.2 to 0.25%. The advantageous effect of 

fibers on the tensile strength of GPC composites leads to 
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enhanced ductility characteristics over plain (no fiber) 

GPC. The polymeric fibers improve the geopolymeric 

matrix of the composites in terms of formation and/or 

redistribution of cracks [54]. The basic geopolymer 

structure includes the formed amorphous geopolymeric 

gel, residual unreacted raw material particles and varied 

pores [54-56]. Fibers can offer a bridging effect over the 

pores or cracks by embedding its two thrums in the 

cementitious matrix, resulting in increased toughness and 

strength of the geopolymeric matrix [54]. As a result, 

higher tensile and flexural strengths were observed in 

FRGPC specimens than non-fiber ones. On the other 

hand, fibers used in this study were hybridized using short 

and long lengths. Hybridization of fibers in terms of size 

and type results in the synergistic effect of fibers. The 

positive synergetic effects of hybridization stems from the 

different mechanisms of short and long fibers in the GPC 

matrix. Shorter fibers are more effective against smaller 

minor cracks, while longer fibers are mainly activated at 

higher loading scenarios to prevent formation and 

opening of major cracks. Therefore, the simultaneous 

usage of different fiber geometries develops positive 

features in the GPC composite for different levels of 

exerted loads [38,57].  

 

 

Figure 6: Flexural strength of the FRGPC and control specimens 
 

4. CONCLUSIONS 
In this paper, the mechanical and physical properties of 

GGBFS-based GPC reinforced with hybrid fibers of 

different volume content (0.15, 0.2 and 0.25%) is 

investigated. The main results drawn from this study, with 

regard to its limitations, can be summarized as below: 

1- Presence of fibers cause reduction of specific density 

and water absorption of GPC composites, due to micro-

structure enhancement and increased density of the 

matrix. These effects displayed a direct relation with fiber 

content and independent of fiber type. 

2- Hybrid fibers improve the compressive strength of 

GPC due to the reinforcement of the concrete matrix and 

the improvement of the Interfacial Transition Zone (ITZ). 

The increase in compressive strength due to the relatively 

low modulus and strength of the fibers (compared to steel 

fibers) was not significant; the hybrid fibers used at 

optimum content (0.2) increased compressive strength by 

6% compared to the non-fiber GPC specimens. 

3- Due to the crack-bridging mechanism of the fibers, the 

fiber reinforced GPC composites displayed significant 

improvement in tensile and flexural strength over 

unreinforced GPC. Using hybrid fibers at optimum 

content (0.2% for tensile strength and 0.15% for bending 

strength), resulted in 24% and 56% increase in tensile and 

flexural strengths of the GPC specimens compared to 

non-fiber ones, respectively. 
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